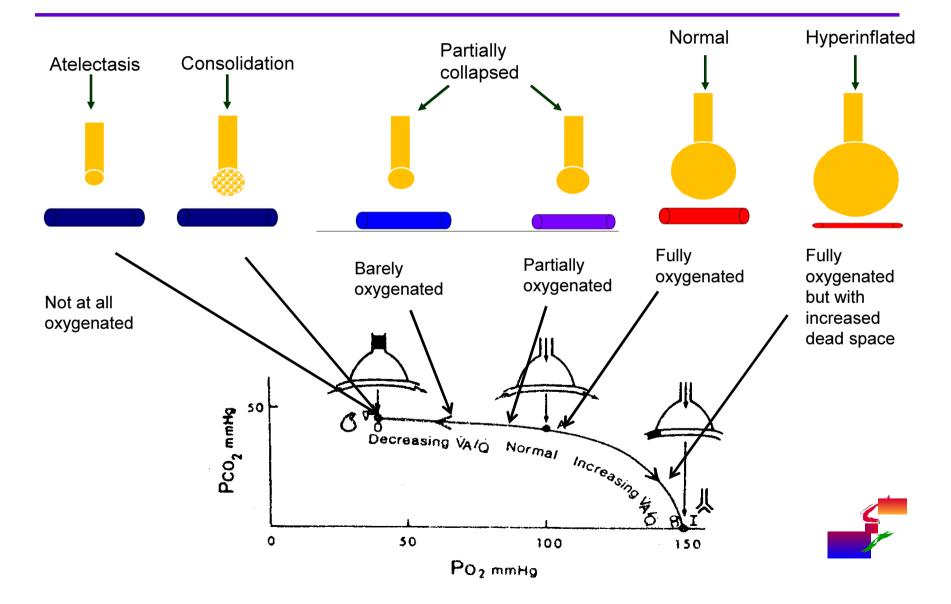


Ventilatory Strategies in Pediatric Respiratory Failure

Shekhar T. Venkataraman MD Professor Departments of Critical Care Medicine and Pediatrics University of Pittsburgh School of Medicine

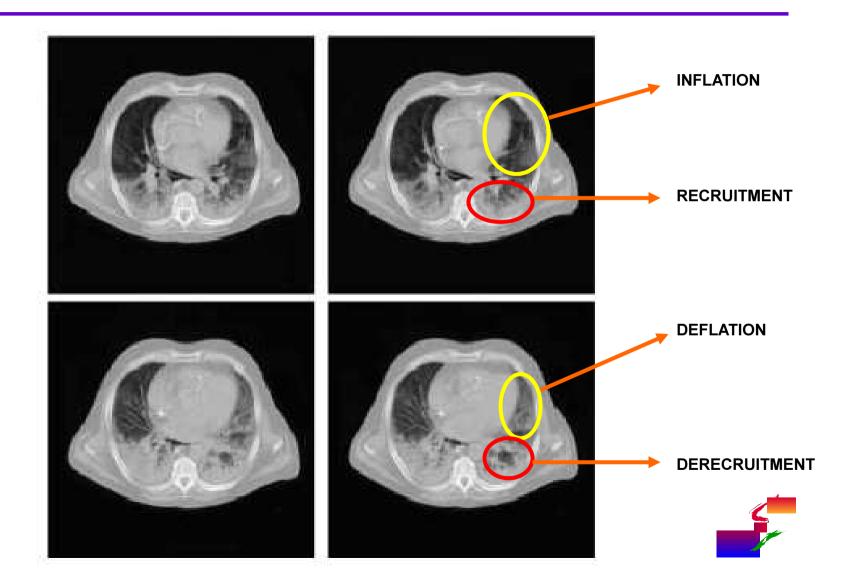


- Oxygenation
 - Intrapulmonary shunting
 - $\blacktriangleright \frac{\dot{v}}{\dot{Q}}$ mismatch
- Ventilation
 - Increased dead space
 - Intrapulmonary shunting

Mechanism of hypoxemia in ALI/ARDS

Goals of management

- Lung management
- Optimizing oxygen delivery to the tissues
- Multiorgan support
- Treating infections
- Preventing adverse outcomes


Some Definitions

- Inflation
 - Increasing the volume in the lungs
 - Distribution of the volumes may not be homogenous
- Recruitment
 - Increasing the number of open alveoli
 - Inflation not same as recruitment
- Overdistension
 - Overinflation of the alveoli beyond its safe capacity
- Deflation
 - Reduction in the volume of the lung
- Derecruitment
 - Open alveoli collapsing and becoming atelectatic

Inflation, deflation, recruitment and derecruitment

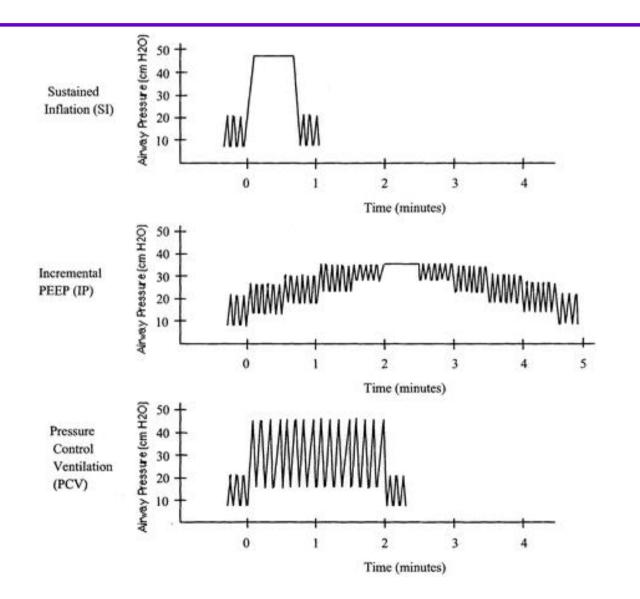
Lung management

- Opening the lung
 - Ventilatory strategies
 - Other strategies
- Preventing the lungs from closing
 - Ventilatory strategies
 - Other strategies
- Protecting the lung
 - Preventing ventilator-induced lung injury

How to open the lung

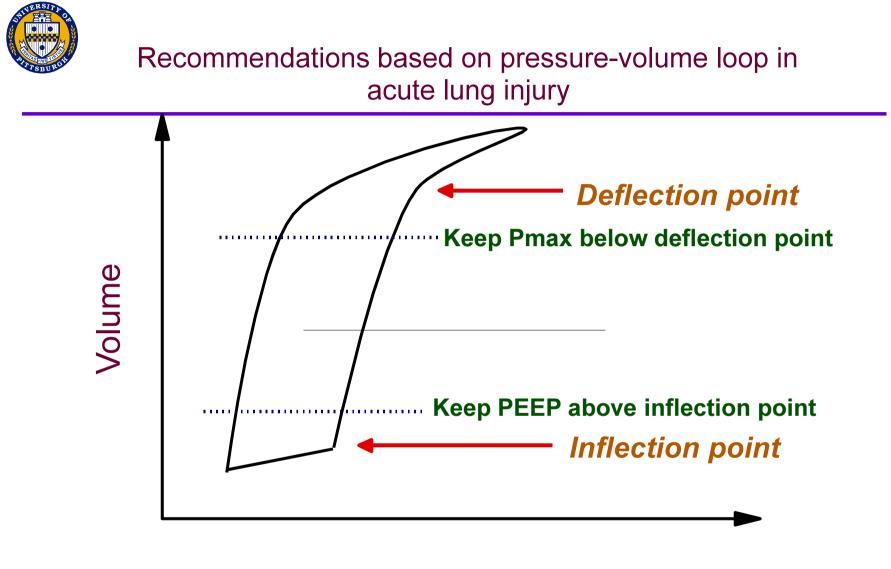
Recruitment

- Recruitment manuever
- ► PEEP
- ► Tidal volume
- Prone positioning
- Surfactant



- Sustained high peak airway pressures
- Periodic increases in peak airway pressure
- Prone positioning
- Prone positioning combined with recruitment maneuvers
- High-frequency ventilation
- Prone positioning combined with high frequency ventilation

Recruitment maneuvers

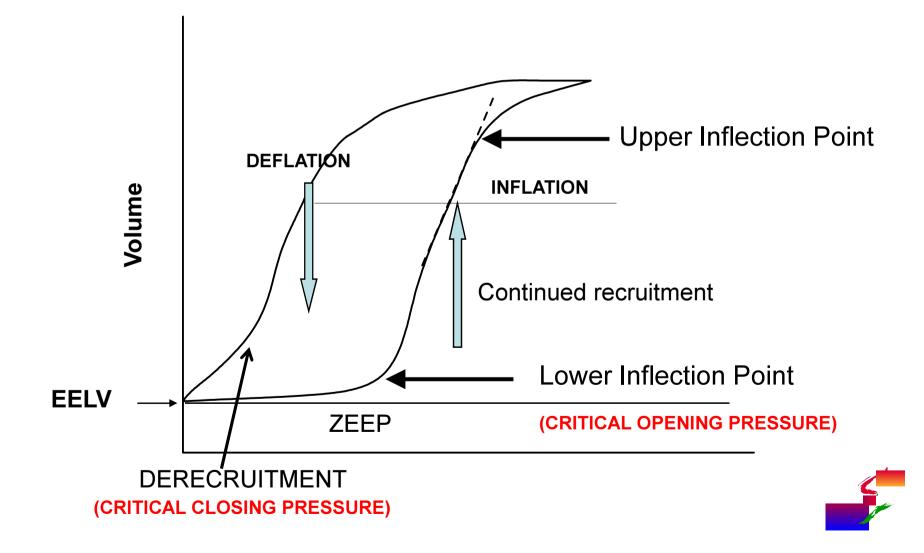


Recruitment

Recruitment = Increased compliance + Decreased Shunt

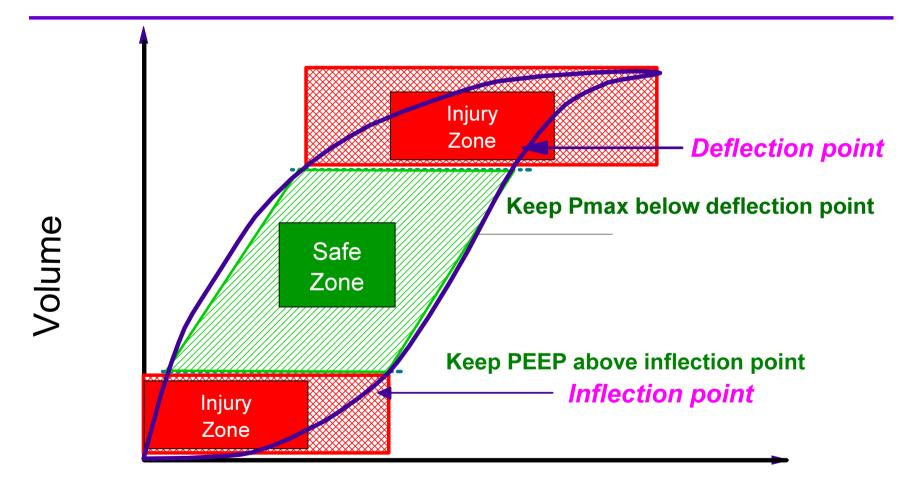
Pressure

Interpreting Pressure-Volume Loop


Inflection point

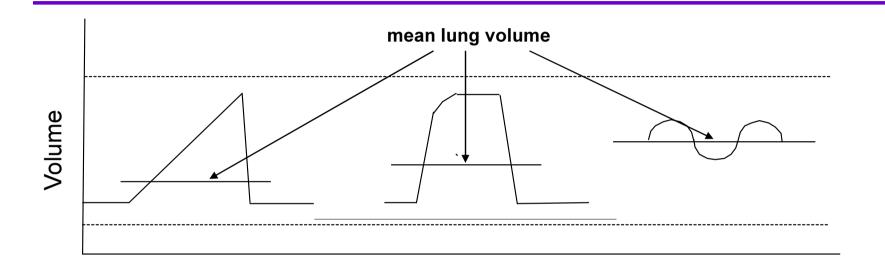
- Represents the opening pressure of most of the alveoli
- PEEP above inflection point = NO DERECRUITMENT
- No more recruitment during inflation lung is already open
- Deflection point
 - Represents the point at which the alveoli are overdistended
 - Keeping peak airway pressure below this point prevents ventilator-induced lung injury

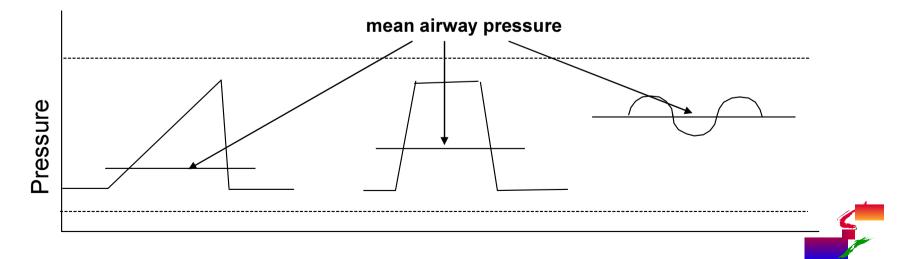
Static-Pressure Volume Loop


Important

- Static pressure-volume loops using super syringe or quasi-static pressure-volume loops with low-flow and long-inspiratory time inflation (validated in adults)
- Dynamic pressure-volume loops (Ventilator Graphics) cannot be used to identify inflection point

Safe zone for ventilation




Pressure

Modes of ventilation

Case 1

- 10 yr old with bilateral pneumonia (35 kg)
- PaO2/FiO2 120 (FiO2 1.0)
- Pressure control ventilation
- Effective Vt = 7 mL/kg
- Rate = 20/min
- PIP = 30

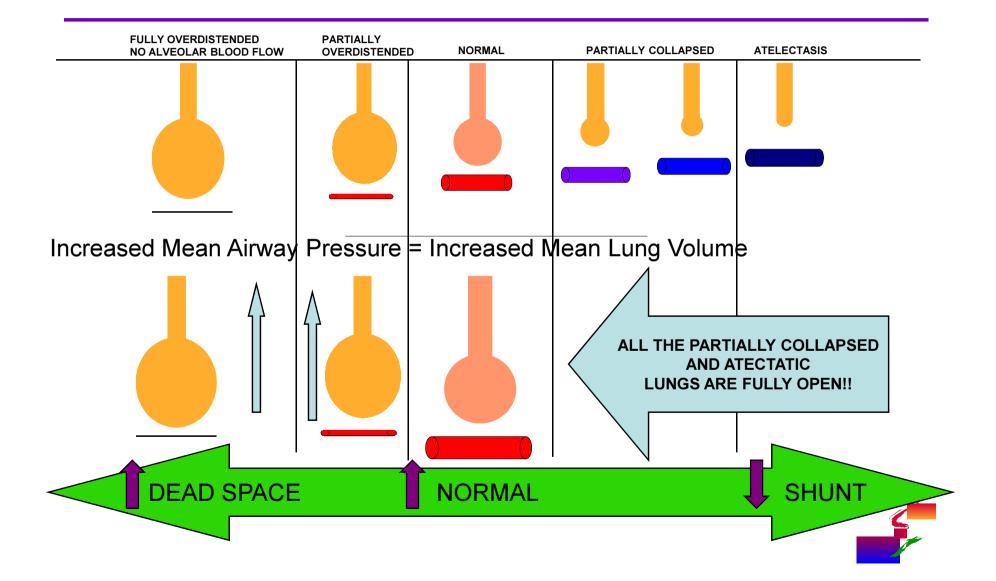
• PEEP = 6

PEEP-Titration

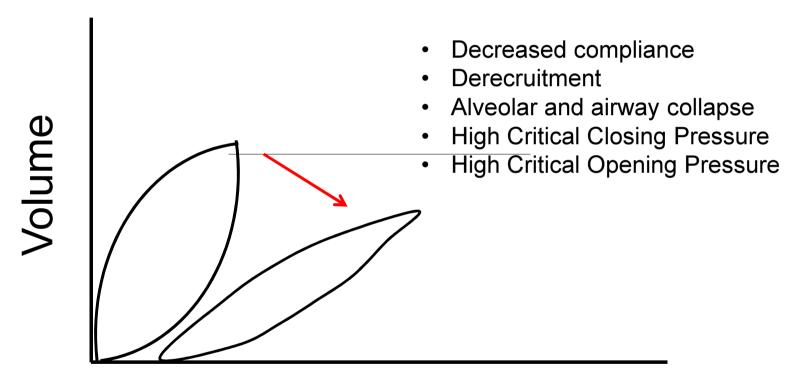
Recruitable

PEEP	Vt-UP	Vt-Down
6	120	135
8	125	140
10	140	160
12	160	180
14	160	170
16	130	130

Pressure control Δ Pressure (PIP – PEEP) was kept constant

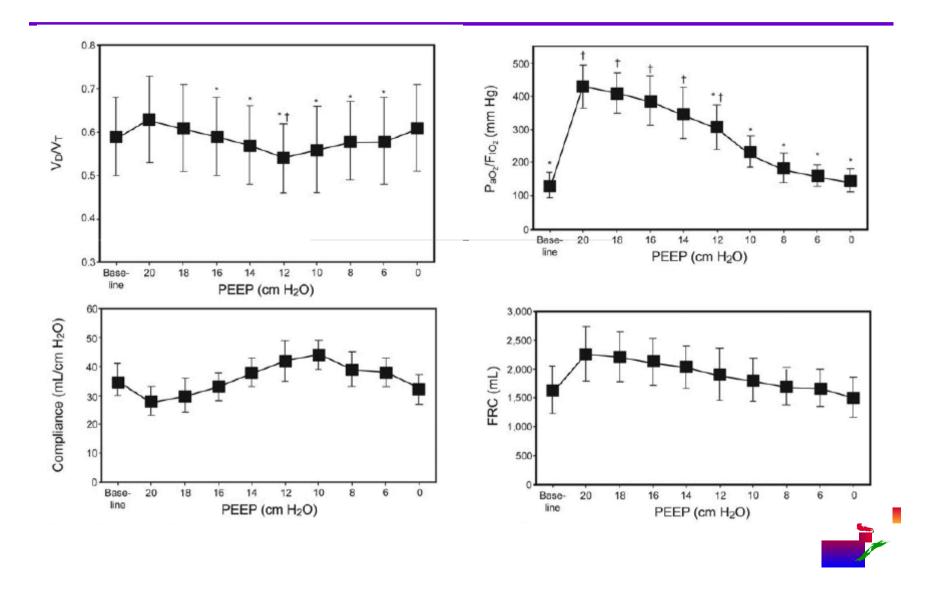

Case 1

- 10 yr old with bilateral pneumonia (35 kg)
- PaO2/FiO2 450 (FiO2 1.0)
- Pressure control ventilation
- Effective Vt = 7 mL/kg
- Rate = 20/min
- PIP = 30
- PEEP = 10



Model 1 - Completely Recruitable lung

Changes in lung mechanics



Pressure

Effect of PEEP on recruitable lung

Case 2

- 2 yr old with bilateral pneumonia (15 kg)
- PaO2/FiO2 150 (FiO2 1.0)
- Pressure control ventilation
- Effective Vt = 7 mL/kg
- Rate = 20/min
- PIP = 30

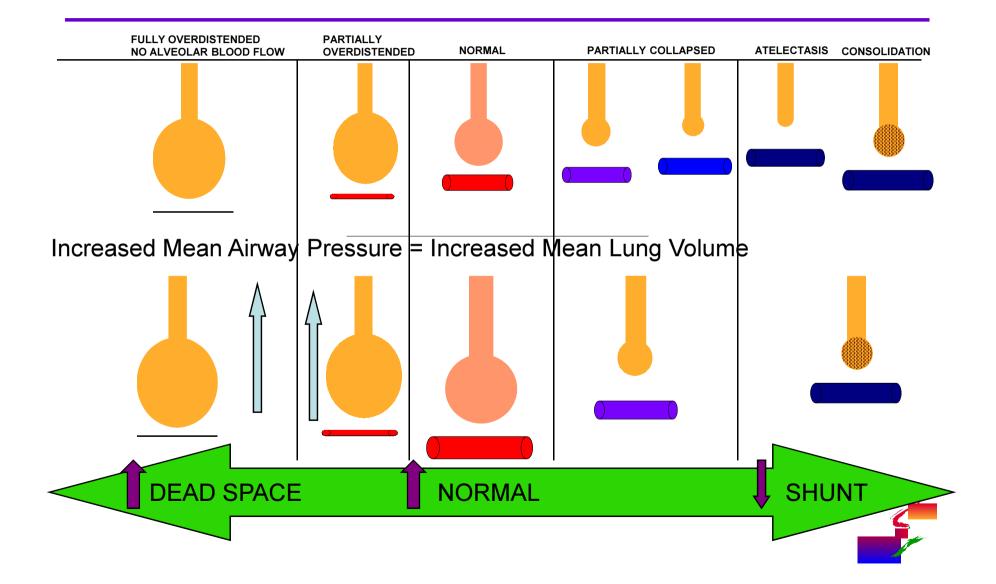
• PEEP = 6

PEEP-Titration

Partially Recruitable

PEEP	Vt-UP	Vt-Down	
6	120	120	
8	120	130	
10	120	140	
12	125	145	
14	130	140	
16	110	110	

Pressure control Δ Pressure (PIP – PEEP) was kept constant


Case 2

- 2 yr old with bilateral pneumonia (15 kg)
- PaO2/FiO2 225 (FiO2 1.0)
- Pressure control ventilation
- Effective Vt = 6 mL/kg
- Rate = 20/min
- PIP = 32
- PEEP = 14
- PaCO2 increased from 42 mmHg to 50 mmHg

Model 2 – Partially Recruitable lung

Case 3

- 6-month old with bilateral pneumonia (15 kg)
- PaO2/FiO2 100 (FiO2 1.0)
- Pressure control ventilation
- Effective Vt = 7 mL/kg
- Rate = 20/min
- PIP = 28

• PEEP = 6

PEEP-Titration

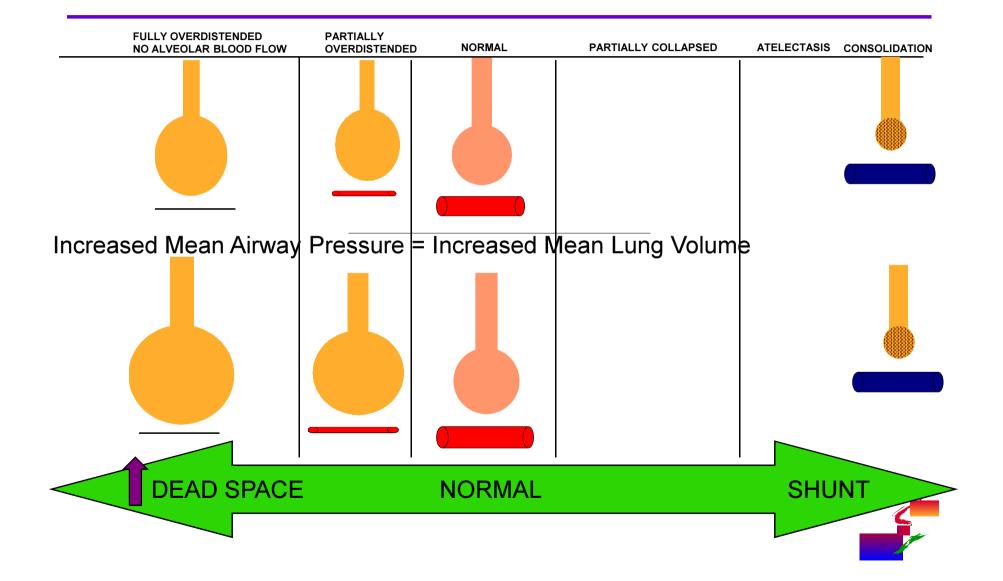
Not Recruitable

PEEP	Vt-UP	Vt-Down
6	120	120
8	120	120
10	120	120
12	110	110
14	100	100
16	90	90

 $\label{eq:pressure control} \Delta \mbox{ Pressure (PIP - PEEP) was kept constant}$

Case 3 – What was done at night

- 6-month old with bilateral pneumonia (15 kg)
- Pressure control ventilation
- Effective Vt = 6 mL/kg
- Rate = 20/min
- PIP = 34
- PEEP = 12
- PaO2 on 100% oxygen 50 mmHg
- SpO2 85%
- HFOV Machine was brought to the room
- Inhaled NO was ordered
- ECMO team was called


Case 3 What we did afterwards

- Effective Vt = 7 mL/kg
- Rate = 20/min
- PIP = Decreased from 34 to 28
- PEEP = Decreased from 12 to 6
- PaO2 on 100% oxygen increased from 50 to 100 mmHg
- Prone positioning PaO2 increased from 100 to 150 mmHg
- We did try inhaled NO
- No response to NO after 2 hours of NO. So taken off NO
- I would recommend leaving this child alone. Keep checking whether the lung can be recruited twice or three times a day and if so, select an appropriate PEEP
- No role for HIGHER AIRWAY PRESSURES UNLESS THE LUNG IS SHOWN TO BE RECRUITABLE!!!!

Non-Recruitable lung

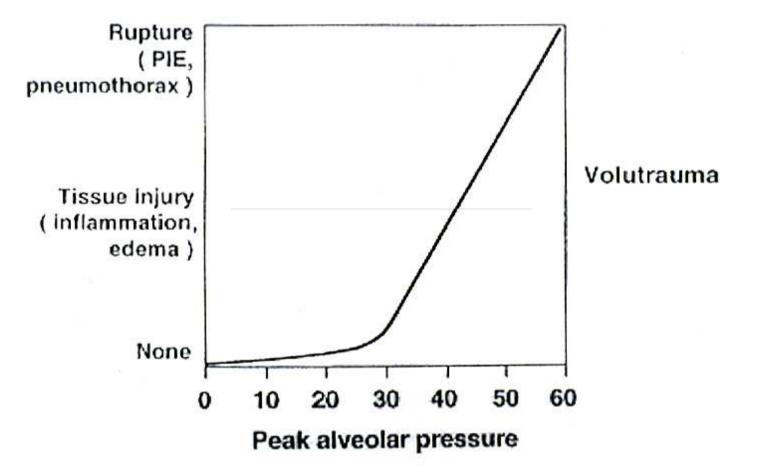
Summary of variables for recruitment with PEEP

- Improved compliance
- Improved oxygenation
- Improved ventilation or no change in ventilation
- No change in hemodynamics or improved hemodynamics

Yin-Yang of PEEP

- Recruitment
- Decreased shunt
- Decreased PVR
- Decreased LV Afterload
- Improved lung compliance
- Decreased VILI

- Negative effects
- Overdistension
- Increased VILI
- Increased shunt
- Increased PVR
- Decreased venous return
- Decreased cardiac output



- Recruit the lung
 - Minimizes Atelectotrauma
- Keep Alveolar Pressures below 35 cms H₂O
 - Small tidal volumes
 - ► HFOV
- Avoid high FiO₂
 - Wean FiO_2 as quickly as possible to <0.6
- Prone positioning (?)

Ventilator-Induced Lung Injury

- Maintain PaO2 of 50-60 mmHg or SpO2 of 90-95%
- Mean lung volume is the primary determinant of oxygenation
- Optimal PEEP
- Mean airway pressure ~ mean lung volume
- Avoid "toxic" inspired oxygen concentration

- Small tidal volumes (6-8 mL/kg)
- Keep alveolar pressure less than 35 cms H2O (preferably less than 30 cms H2O)
- Permissive hypercapnia

Management – Change in practice over time

Have changes in ventilation practice improved outcome in children with acute lung injury?*

Waleed H. Albuali, MD; Ram N. Singh, MD, FRCPC; Douglas D. Fraser, MD, PhD, FRCPC; Jamie A. Seabrook, MA; Brian P. Kavanagh, MD, FRCPC; Christopher S. Parshuram, MD, FRACP; Alik Kornecki, MD

(Pediatr Crit Care Med 2007; 8:324-330)

Table 2.	Mortality	between	study groups	and according	to underlying conditions ^a
----------	-----------	---------	--------------	---------------	---------------------------------------

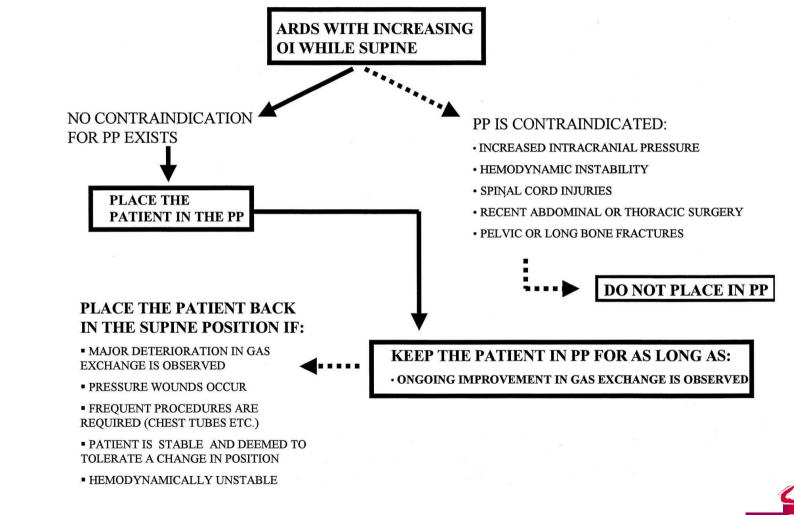
54-	Past (1988-1992) (%)	Recent (2000-2004) (%)	p Value
Total	79	85	
Survivors	51 (65)	67 (79)	.04
Nonsurvivors	28 (35)	18 (21)	
Immunodeficiency	and the second second		
Total	13 (16)	13 (15)	.84
Survivors	5 (38)	5 (38)	.99
ARDS ^b	36657-53653		
Total	58 (73)	72 (85)	.08
Survivors	33 (57)	54 (75)	.03
Sepsis			
Total	26 (33)	29 (34)	.87
Survivors	9 (35)	19 (66)	.02

Table 3. Modality	of ventilation and me	an respiratory :	and ventilatory	values during	the first 3 days of
ventilation					

	Past (1988–1992) (n = 79)	Recent (2000–2004) (n = 85)	p ^a Value
VT, mL/kg ⁻¹	10.2 ± 1.7 (211)	8.1 ± 1.4 (233)	<:.001
PIP, cm H ₂ O	31.5 ± 7.3 (223)	→ 27.8 ± 4.2 (233)	<.001
PEEP, cm H ₂ O	6.1 ± 2.7 (223)	7.1 ± 2.4 (232)	.007
Paco, mm Hg	37.0 ± 5.0 (225)	47.2 ± 11.8 (231)	<:.001
Pa02. mm Hg	84.4 ± 14.4 (225)	$78.9 \pm 14.9 (245)$.017
01	14.7 ± 5.0 (223)	▶ 17.7 ± 5.3 (232)	<.001
Pa02/F102	153.0 ± 59.9 (225)	$139.2 \pm 53.1 (239)$.12
VI	28.4 ± 13.6 (225)	$28.6 \pm 15.6 (235)$.94
PC, %	52 (225)	55 (245)	.99
VC, %	47 (225)	37 (245)	.02
HFOV, %	1 (225)	8 (245)	<.001

Vt, tidal volume; PIP, peak inspiratory pressure; PEEP, positive end-expiratory pressure; Ol, oxygenation index; VI, ventilation index; PC, pressure control; VC, volume control; HFOV, high-frequency oscillatory ventilation.

"Independent samples *t*-tests with the Bonferroni correction (p = .05/3 = .017) were used to test for significant differences between the groups. In parentheses, the number of ventilation days.



Management – Prone positioning

A practice algorithm for prone positioning

Relvas M S et al. Chest 2003;124:269-274

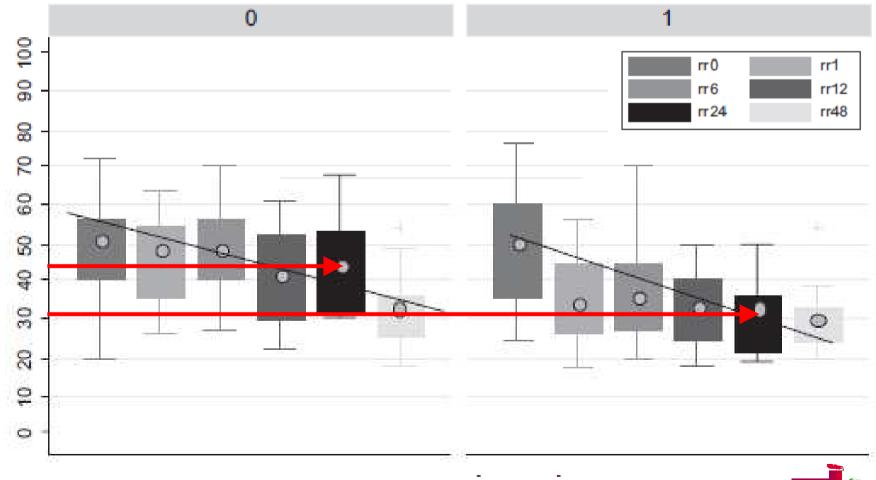
Noninvasive ventilation

A prospective, randomized, controlled trial of noninvasive ventilation in pediatric acute respiratory failure*

Leticia J. Yañez, MD; Mauricio Yunge, MD; Marcos Emilfork, MD; Michelangelo Lapadula, MD; Alex Alcántara, MD; Carlos Fernández, MD; Jaime Lozano, MD; Mariana Contreras, MD; Luis Conto, MD; Carlos Arevalo, MD; Alejandro Gayan, MD; Flora Hernández, RN; Mariela Pedraza, MD; Marion Feddersen, MD; Marcela Bejares, MD; Marta Morales, MD; Fernando Mallea, MD; Maritza Glasinovic, MD; Gabriel Cavada, PhD

NIV vs Control patients

<u>.</u>	Control Group $(n = 25)$	NIV Group ($n = 25$)	р
Male:female	13:12	17:8	0.368
Age (months)	18 (1-144)	16 (2-156)	0.58
Downes score	7 (6-8)	7 (5-8)	0.811
Tal score	7 (4-9)	7 (4-8)	0.531
Heart rate (beats/min)	152 (125-177)	154 (99-200)	0.637
Respiratory rate (breaths/min)	51 (28-72)	50 (36-76)	0.980
рН	7.36 (7.22-7.45)	7.39 (7.1-7.49)	0.672
Po ₂ (mm Hg)	109 (53-248)	89 (34-345)	0.06
Pco ₂ (mm Hg)	37.4 (25-64)	39.1 (27-81)	0.329
F102	0.5(0.21-1)	0.5(0.3-1)	- 181983
Pao_/F10-2	190 (101-400)	150 (100-383)	0.115


Table 1. Baseline demographic and physiological parameters (median)

-, p value was not calculated; NIV, noninvasive ventilation.

RR over time

Outcomes

Table 3. Complications, patient outcome, and ICU stay

	Control Group (n = 25)	NIV Group (n $= 25$)	p
Intubation, n (%)	15 (60%)	7 (28%)	0.045
Days of invasive ventilation (mean days)	3.1	2.6	
ICU length of stay (mean days)	5.5 ± 2.7	6.7 ± 5.9	0.19
Hospital length of stay (mean days)	10.6 ± 4.8	10.4 - 7.9	0.51

ICU, intensive care unit; NIV, noninvasive ventilation; ---, p value was not calculated.

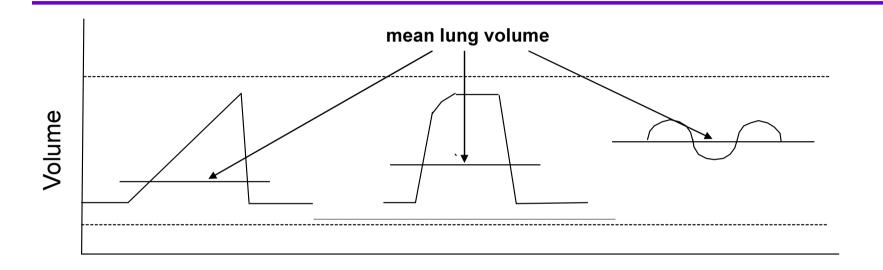
Other Strategies

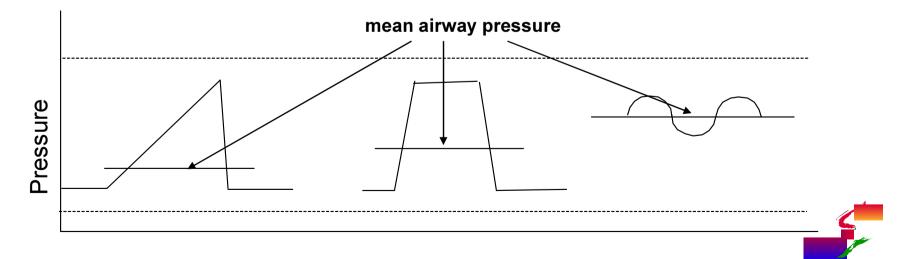
Inverse-ratio ventilation

Increases mean airway pressure without increasing peak inspiratory pressure

Airway-pressure release ventilation

- Limits peak airway pressure
- Allows spontaneous breathing
- Useful in milder lung injury
- Permissive hypercapnia
 - Allows limitation of peak airway pressure
 - Allows PaCO2 to rise with compensation of pH




- Is useful only when the lung is recruitable
- Start with a Mean Airway Pressure 3-6 cms H₂O higher than the Conventional Mechanical Ventilation
- Determinants of oxygenation
 - ► Mean airway pressure and FiO₂
- Determinants of ventilation
 - Amplitude "Adequate Chest Wiggle"
 - ► Frequency 6-10 Hz
 - ► Bias flow 20-40 L/min

Modes of ventilation

Other Strategies

Inverse-ratio ventilation

Increases mean airway pressure without increasing peak inspiratory pressure

Airway-pressure release ventilation

- Limits peak airway pressure
- Allows spontaneous breathing
- Useful in milder lung injury
- Permissive hypercapnia
 - Allows limitation of peak airway pressure
 - Allows PaCO2 to rise with compensation of pH

Other Strategies

• Fluid management

- Fluid restriction with early diuresis does improve pulmonary function and outcome (Chest 1990;97:1176, Chest 1991;100:1068)
- Optimizing oxygen transport
 - Optimize oxygen delivery
 - Delivery-dependent consumption in some pts

- Is useful only when the lung is recruitable
- Start with a Mean Airway Pressure 3-6 cms H₂O higher than the Conventional Mechanical Ventilation
- Determinants of oxygenation
 - ► Mean airway pressure and FiO₂
- Determinants of ventilation
 - Amplitude "Adequate Chest Wiggle"
 - ► Frequency 6-10 Hz
 - ► Bias flow 20-40 L/min

