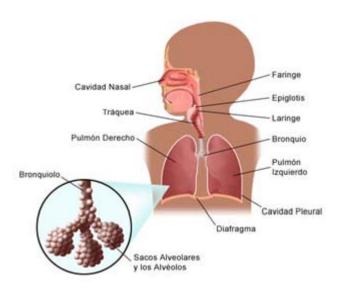


7° CONGRESO ARGENTINO DE NEUMONOLOGÍA PEDIÁTRICA

Jornada de Enfermería en Enfermedades Respiratorias Pediátricas Jornada de Kinesiología Respiratoria



18, 19 y 20 de noviembre de 2015

Rédito de las Pruebas de función pulmonar según la edad del paciente

Dra. María Belén Lucero Neumóloga Pediatra

Las pruebas de función pulmonar (PFP) son una

herramienta importante en el diagnóstico, evaluación

y manejo de las enfermedades del aparato

respiratorio y en la comprensión y evaluación del

desarrollo del sistema respiratorio.

¿Cómo medir la FP en los diferentes grupos etarios?

Lactantes

2 años

6 años

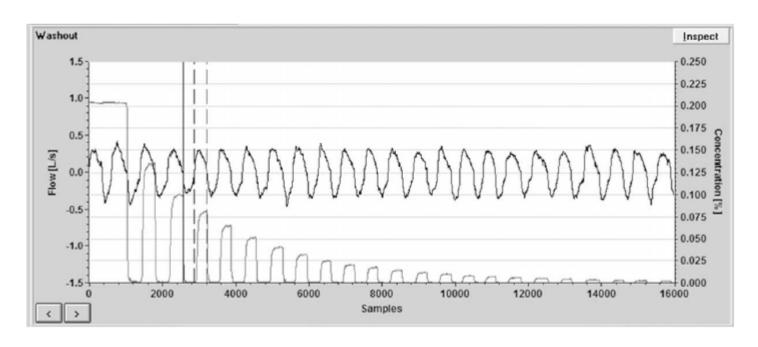
- MBW: LCI
- Espiración forzada a volúmenes elevados
- C y R
- Pletismografía

- Espirometría y curva F/V
- Medición de Resistencia:
 - Oscilación forzada
 - Rint
- MBW: LCI

- Espirometría y curva F/V
- Volúmenes pulmonares
- DLCO
- Resistencia de la VA
- MBW: LCI
- Pimax-Pemax

Pruebas de función pulmonar en el lactante

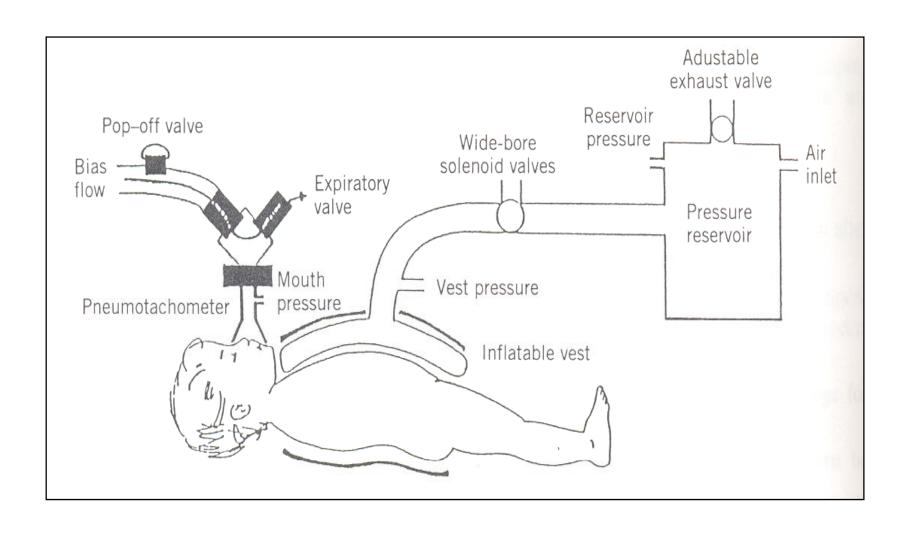
Características:


- Falta de cooperación
- Dinámica pulmonar cambiante
- Requieren sedación
- Duración prolongada
- Equipamiento costoso
- Resistencia parental

Lung clearance index (LCI)

LCI

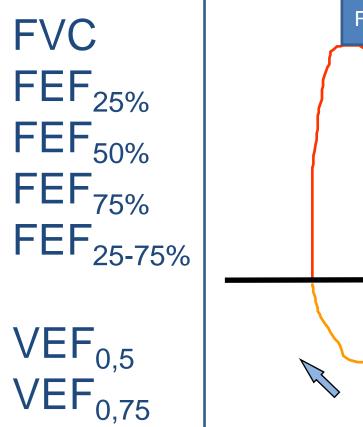
- Derivado de MBW
- Calcula CRF e Índice de aclaramiento pulmonar
- Alta sensibilidad para evaluar heterogeneidad en la distribución de la ventilación
- Volumen corriente, reproducible, fácil de realizar en todas las edades
- No requiere sedación del paciente
- Equipamiento costoso

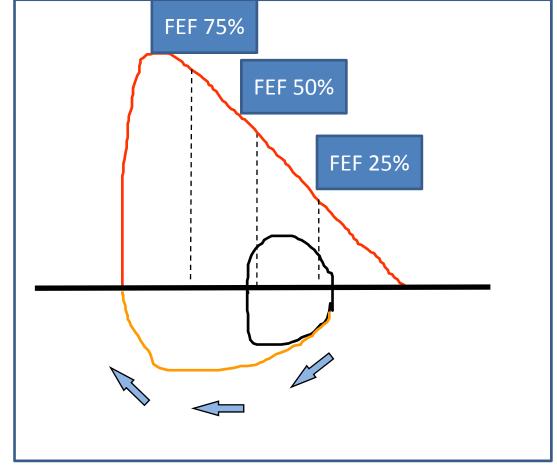

Utilidad de LCI

Evalúa el compromiso de la función pulmonar secundario a inflamación y/o cambios estructurales en la vía aérea desde etapas muy tempranas

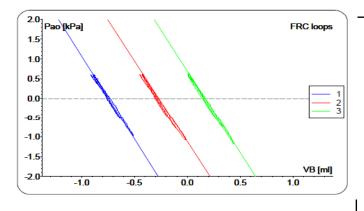
Fibrosis quística
Asma

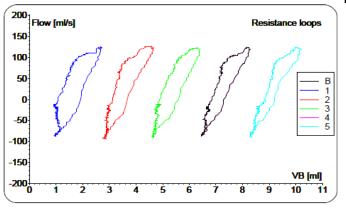
Maniobras forzadas a volúmenes elevados (RVRTC)





Dell




Parámetros Evaluados

Pletismografía del lactante

	Pred	Basal 1	Basal 2	Basal 3	Best	%Pred F
VT-FRC	61.2	59.6	61.8	62.3	61.3	100.1
VT/kgR		10.7	11.1	11.2	11.1	
RR-FR(53.0	28.1	27.6	27.0	27.5	52.0
TOGV		211.0	217.1	214.6		
FRCpl	165	147	150	145	147	89.3
FRCpC					1.6	
sRaw	3.39	4.33	4.35	4.62	4.55	134.2
sRinef						
sRexef						
sGaw	0.29	0.23	0.23	0.22	0.22	74.5
EELs%		0.7	1.1	1.0		
Date		030914	030914	030914	0309	
Time		11:08 <i>P</i>	11:08 <i>A</i>	11:084	11:08	

Compliance y Resistencia del SR

		ULN	Pred	LLN	Best ^o	%Pred
Rrs SO R/C	[cmH20*s/L]	46.39	42.21	38.02	54.47	129.1
Crs SO R/C	[ml/cmH20]	10.48	8.63	6.78	8.56	99.2
CrsSO/kg	[ml/cmH20/kg]	1.4	1.2	1.1	1.6	126.0

Indicaciones de PFP en lactantes

Aplicación clínica

- Patrón funcional
- Severidad
- Evolución
- Respuesta broncodilatadora?

Protocolo de seguimiento / investigación

- EPCPV
- FQP
- DBP

AMERICAN THORACIC SOCIETY DOCUMENTS

An Official American Thoracic Society Workshop Report: Optimal Lung Function Tests for Monitoring Cystic Fibrosis, Bronchopulmonary Dysplasia, and Recurrent Wheezing in Children Less Than 6 Years of Age

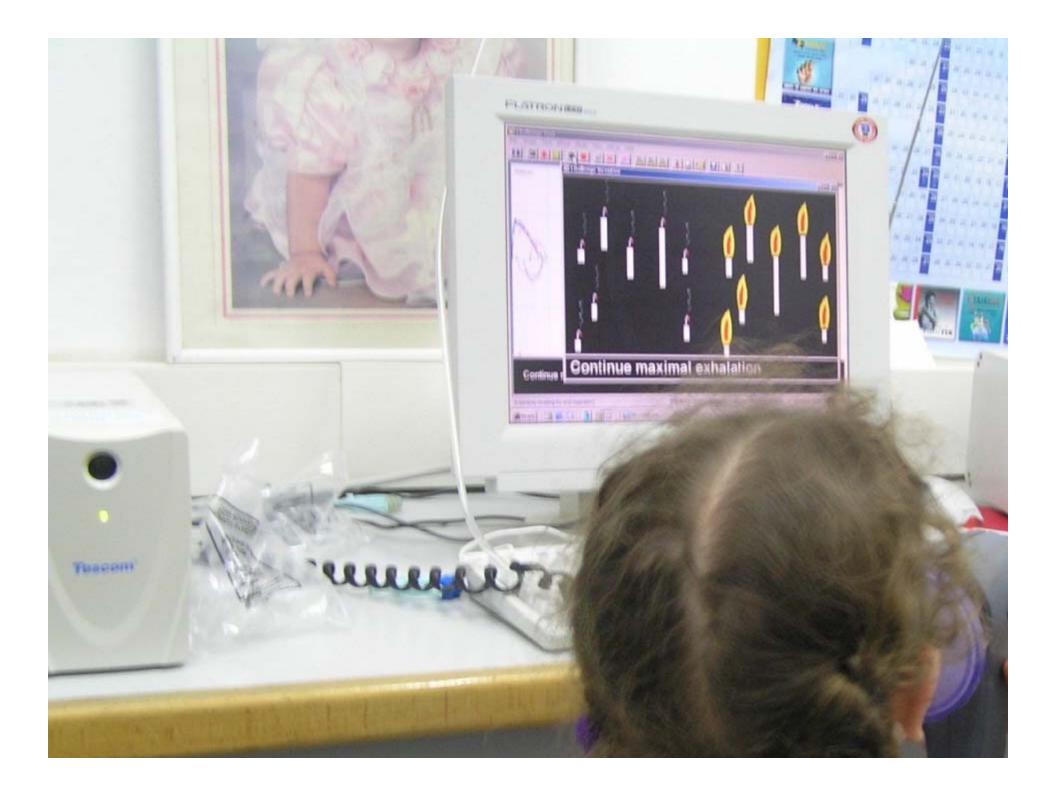
	Infant RVRTC	Infant Pleth	Preschool Spiro	Preschool sRaw	Preschool Rint	Preschool FOT	MBW
Commercial equipment Standard operating procedure	Yes Yes	Yes Yes	Yes Yes	Yes No	Yes Yes	Yes Yes	Yes Yes
Safe Feasible Adequate population- based reference data	Yes* Yes* No [†]	Yes Yes No [†]	Yes Yes Yes [‡]	Yes Yes No	Yes Yes Yes [‡]	Yes Yes Yes [‡]	Yes Yes Yes [‡]
Within-test intrasubject variability measured Discriminates disease population from healthy control	Yes	Yes	Yes	Yes	Yes	Yes	Yes
subjects CF BPD Recurrent wheeze Evidence for clinical utility	Yes Yes Yes Not assessed	Yes Yes No Not assessed	Yes [§] Unknown Yes [¶] Not assessed	Yes Unknown Unknown Not assessed	No Unknown Yes [¶] Not assessed	Conflicting Unknown Unknown Not assessed	Yes Probably not Probably Not assessed

PFP en Preescolares

- Crecimiento de las vías aéreas y aumento del número de alveolos
- Osificación de la caja torácica con patrón respiratorio similar al adulto
- Técnicas que requieran poca colaboración y coordinación
- La mayoría de los niños de 2 a 6 años pueden realizar PFP
- No extrapolar valores de referencia de grupos de mayor edad
- Los resultados deben expresarse como DS de la media

Espirometría

- ✓ Pobre capacidad de atención, baja tolerancia a la frustración.
- ✓ Diferencias fisiológicas:
 - ✓ Volúmenes pulmonares pequeños en relación al tamaño de VA.
 - ✓ Espiración más corta.
 - ✓ Curva F/V es convexa.
- ✓ Los criterios de aceptabilidad y reproducibilidad difieren de escolares y adultos.
- ✓ El rendimiento de la espirometría en este grupo etario varía entre 60
 a 100% y es directamente proporcional a la edad
- ✓ Ventaja: Seguimiento longitudinal.


Curva Flujo/Volumen

Cambios en la forma de la curva flujo volumen entre los 3 y 6 años. Nótese la forma convexa a los 3 años, que no se practica la maniobra inspiratoria y que los tiempos espiratorios son de poco más de un segundo

Adultos	Pre escolares
Inicio de la maniobra VBE no mayor a 5% o 150 ml de CVF	VBE 80 ml o 10-12% CVF
Curva V/T tiempo espiratorio meseta 6 seg	Generalmente el tiempo espiratorio es de 1 seg
VEF1 y VEF/CVF útiles para evaluar obstrucción	VEF 0,5 y VEF 0,75.
Reproducibilidad: diferencia ≤5%	Reproducibilidad: hasta 10% de diferencia.

American Thoracic Society Documents

An Official American Thoracic Society/European Respiratory Society Statement: Pulmonary Function Testing in Preschool Children

TABLE 3. INDICES TO BE REC	ORDED AND REPORTED
Indices That Should Always Be Reported*	Indices That Must Be Recorded for Quality-Control Purposes, and May Be Reported If Desired
FVC FEV _{0.5} FEV _{0.75} ‡ FEV ₁ ‡	FEF ₂₅₋₇₅ † FEF ₂₅ † FEF ₅₀ † FEF ₇₅ †
Repeatability for parameters above Number of satisfactory attempts Posture Use of noseclips	PEF FET VBE Point at which expiratory flow ceases, expressed as a proportion of PEF

American Thoracic Society Documents

An Official American Thoracic Society/European Respiratory Society Statement: Pulmonary Function Testing in Preschool Children

	No. of Children	Age Range (yr), Height Range (cm)	Notes	Indices	Prediction Equation
Eigen and colleagues (5)	214	3–7, 85–130	Few subjects < 95 cm	FVC (L) FEV ₁ (L) FEF ₂₅₋₇₃ (L/s) PEF (L/s)	Girls and Boys $\ln(\text{FVC}) = -13.63 + 2.95 \times \ln(\text{height in cm})$ $\ln(\text{FEV}_1) = -12.26 + 2.63 \times \ln(\text{height in cm})$ $\ln(\text{FEF}_{25.75}) = -8.13 + 1.81 \times \ln(\text{height in cm})$ $\ln(\text{PEF}) = -10.99 + 2.54 \times \ln(\text{height in cm})$
Nystad and colleagues (9)	603	3-6, 90-130	Includes some subjects with asthmatic symptoms*		Girls Boys $FVC = -1.93 + 0.0279 \times (height in cm)$ $FVC = -2.52 + 0.0337 \times (height in cm)$ $FEV_{0.5} = -1.17 + 0.0192 \times (height in cm)$ $FEV_{0.5} = -1.35 + 0.0210 \times (height in cm)$ $FEV_1 = -1.66 + 0.0251 \times (height in cm)$ $FEV_1 = -2.11 + 0.0295 \times (height in cm)$ $PEF = -3.72 + 0.0589 \times (height in cm)$ $PEF = -4.04 + 0.0620 \times (height in cm)$
Zapletal and colleagues (10)	173	3-6, 90-130	Few subjects < 105 cm	FVC (ml) FEV ₁ (ml) FEF ₂₅ (L/s) FEF ₅₀ (L/s) FEF ₇₅ (L/s) PEF (L/s)	Girls and Boys In(FVC) = $-12.88 + 2.767 \times In(height in cm)$ In(FEV ₁) = $-12.06 + 2.584 \times In(height in cm)$ In(FEF _{2s}) = $-9.681 + 2.244 \times In(height in cm)$ In(FEF _{2s}) = $-8.578 + 1.943 \times In(height in cm)$ In(FEF _{2s}) = $-7.559 + 1.608 \times In(height in cm)$ In(PEF) = $-9.575 + 2.232 \times In(height in cm)$
Vilozni and colleagues (74)	109	3-6, 85-126		FVC (L) FEV ₀₃ (L) FEV ₁ (L) FEF ₂₀ (L/s) FEF ₂₃₋₇₃ (L/s) FEF ₂₃₋₇₃ (L/s)	Girls and Boys $FVC = 0.0834 \times exp(0.0243) \times (height in cm)$ $FEV_{0.3} = 0.0777 \times exp(0.0223) \times (height in cm)$ $FEV_1 = 0.0831 \times exp(0.0231) \times (height in cm)$ $FEF_{30} = 0.4030 \times exp(0.0144) \times (height in cm)$ $FEF_{73} = 0.1642 \times exp(0.0189) \times (height in cm)$ $FEF_{73-7} = 0.3080 \times exp(0.0165) \times (height in cm)$ $FEF_{73-7} = 0.3150 \times exp(0.0234) \times (height in cm)$

Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations

Philip H. Quanjer, Sanja Stanojevic, Tim J. Cole, Xaver Baur, Graham L. Hall, Bruce H. Culver, Paul L. Enright, John L. Hankinson, Mary S.M. Ip, Jinping Zheng, Janet Stocks and the ERS Global Lung Function Initiative

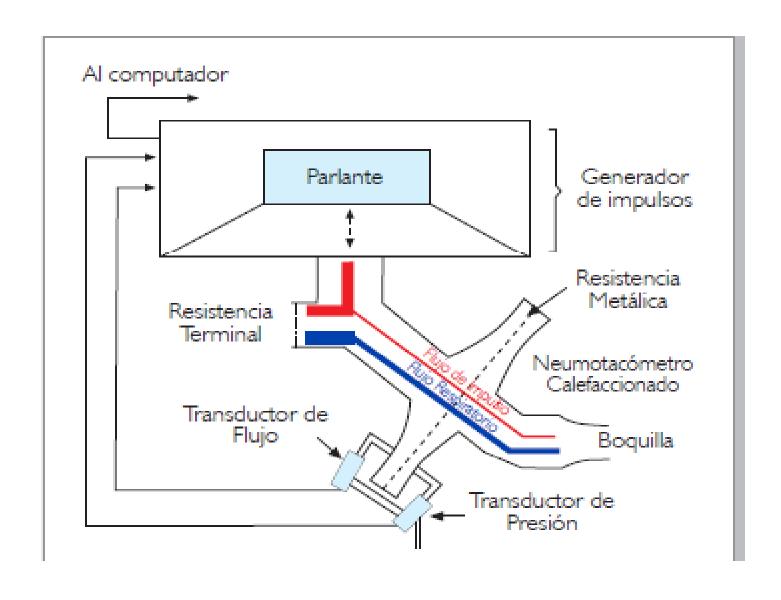
Eur Respir J 2012; 40: 1324-1343

www.growinglungs.org

Desafíos a investigar

- Ecuaciones de referencia con datos longitudinales desde etapas tempranas de la vida.
- Utilidad de Volúmenes espiratorios cortos (VEF 0,5).
- Software que identifiquen automáticamente maniobras no adecuadas
- Evaluación de la variabilidad a corto y largo plazo en preescolares
- Definición de respuesta broncodilatadora
- Evaluar la aplicabilidad clínica de la espirometría en preescolares en diferentes patologías.

Técnica de Oscilación Forzada (IOS)



- Determina la IMPEDANCIA del Sistema Respiratorio (Zrs)
- No es dependiente del esfuerzo (elimina la influencia del tono broncomotor)
- Cooperación pasiva
- Complementaria a otras PFP
- Equipamiento costoso

Oscilación Forzada

IOS

Oscilometría de Impulso (IOS)

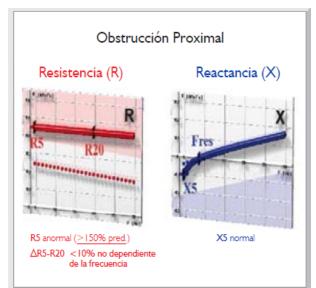
IMPEDANCIA DEL SISTEMA RESPIRATORIO (Zrs)

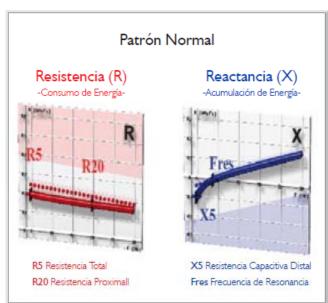
Impedimento natural al flujo de aire que ofrece el sistema respiratorio

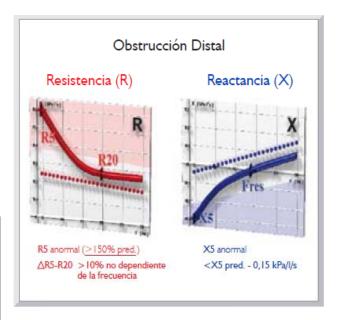
Resistencia Pulmonar (R)

Reactancia (X)

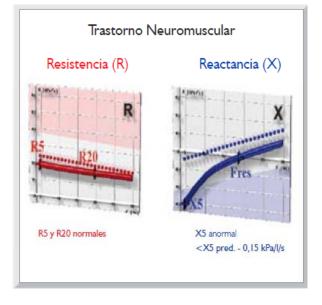
Vía Aérea


Pulmón y Tórax


Retracción elástica


IOS: Valores de Referencia

Forced oscillation technique			
Duiverman and colleagues, 1985 (15)	255	2.3-12.5	18 <100 cm
Ducharme and colleagues, 1998 (195)	206	3–17	16 at 100 cm
Mazurek and colleagues, 2000 (16)	61	2.8-7.4	8 <100 cm
Klug and Bisgaard, 1998 (174)	121	2–7	16 <3 yr


First author [ref.]	Technique	Ethnic group	Subjects n	Age range yrs	Height range cm	Reported prediction equation variables
Frei [23]	IOS	Caucasian – Canadian	222	3–10	90–155	Rrs at 5-35 Hz Xrs at 5-35 Hz Fres AXrs
Dencker [24]	IOS	Caucasian – Scandinavian	360	2–11	90–162	Rrs at 5-20 Hz Xrs at 5-20 Hz Fres
Амка [25]	IOS	Asian – Iranian	509	5–18	127–197	<i>R</i> rs at 5–25 Hz <i>X</i> rs at 5–25 Hz
Nowowiejska [26]	IOS	Caucasian – Polish	626	3.1–18.9	95–193	Rrs at 5-35 Hz Xrs at 5-35 Hz Fres
HALL [27]	MF	Caucasian – Australian	158	2–7	92–127	Rrs at 6–10Hz Xrs at 6–10Hz Fdep
V∪ [28]	SF	Asian – Vietnamese	175	6–11	111–154	Rrs at 8Hz Xrs at 8Hz

Utilidad de IOS

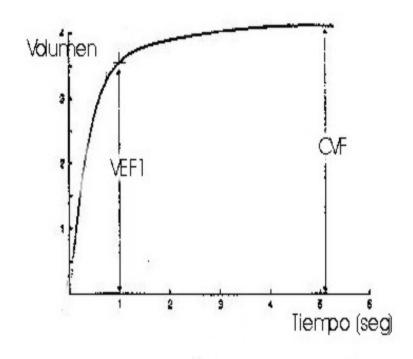
- Puede utilizarse desde la edad preescolar en adelante
- Maniobras a VC, evita el efecto broncomotor que puede generar el esfuerzo
- Sensible para evaluar respuesta broncodilatadora
- Utilidad en pacientes con diagnóstico de asma, obstrucción bronquial recurrente. Los estudios no son concluyentes en FQ

PFP en mayores de 6 años

La espirometría es la PFP más ampliamente utilizada a partir de ésta edad.

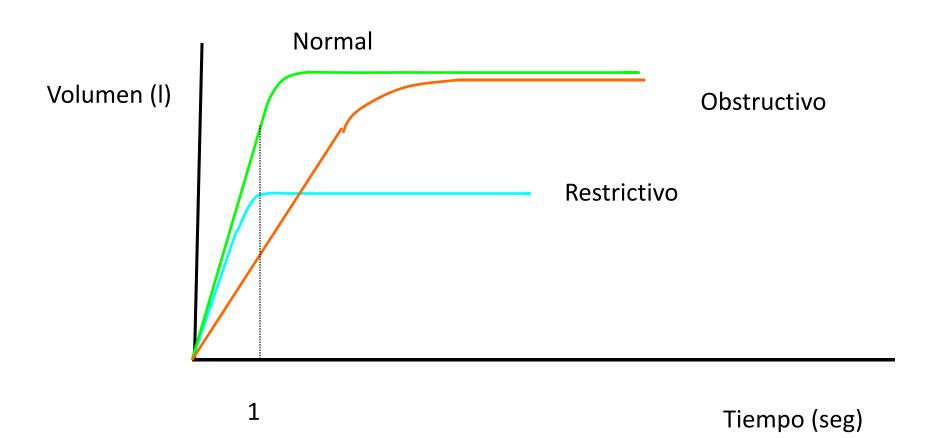
Espirometría forzada

 Permite evaluar la mecánica del sistema respiratorio a través de la medición de volúmenes y flujos.

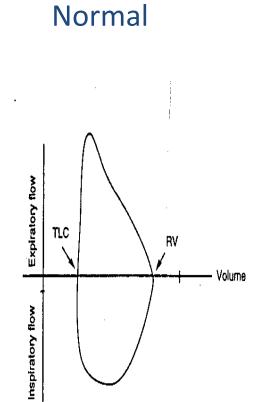

 Requiere colaboración por parte del paciente y personal entrenado.

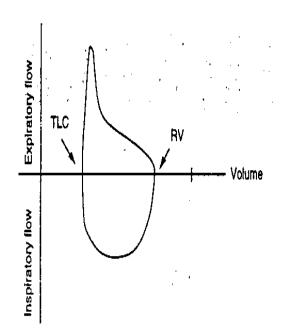
Equipamiento poco costoso.

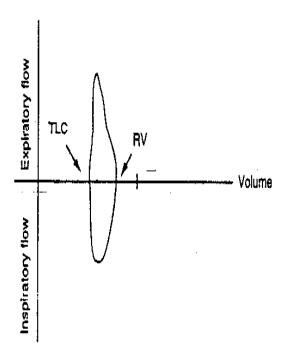
Tipos de curva

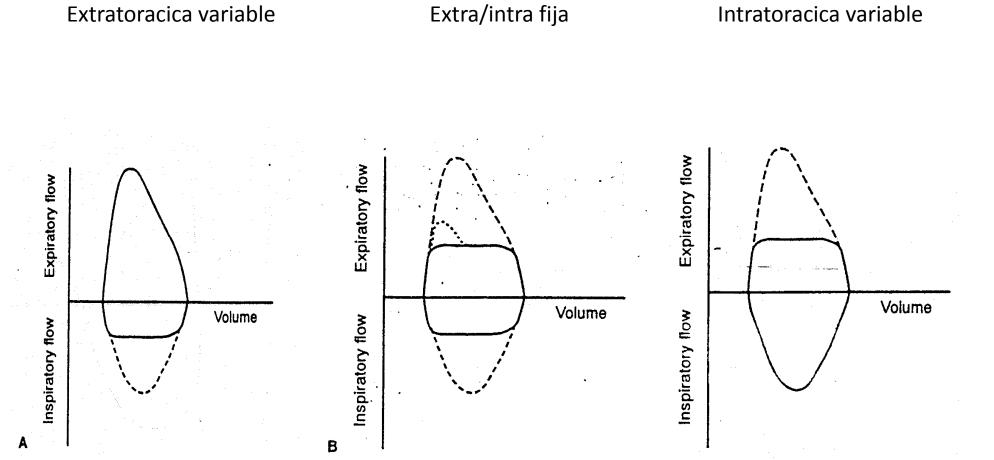

Curva volumen – tiempo

Curva flujo - volumen




Curva volumen - tiempo


Curvas flujo – volumen

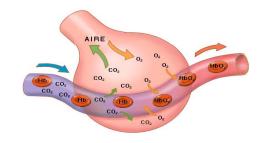

Obstructiva

Restrictiva

Obstrucción vía aérea central

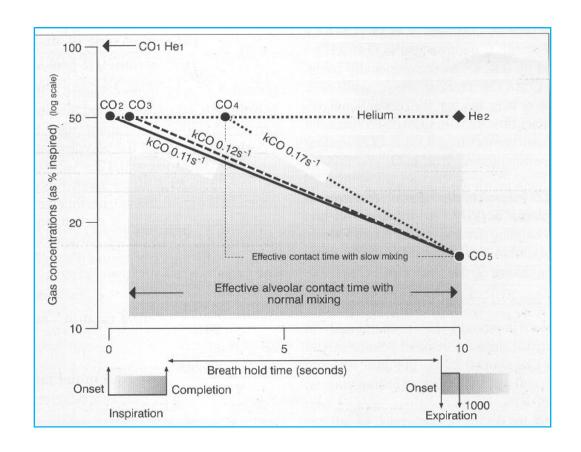
Indicaciones

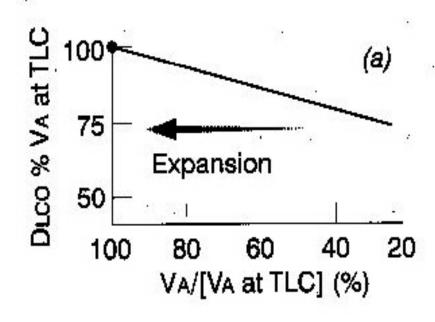
- Estudio basal y evolución de enfermedades respiratorias.
- Pesquisa de pacientes con enfermedad sub clínica.
- Evaluación funcional de pacientes trasplantados
- Disnea.
- Evaluación de compromiso pulmonar de enfermedades sistémicas
- Efectos de drogas/radioterapia
- Preoperatorio.
- Incapacidad laboral.
- Test de provocación bronquial.
- Estudios epidemiológicos

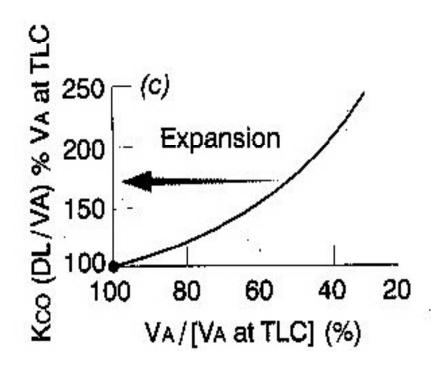

Contraindicaciones

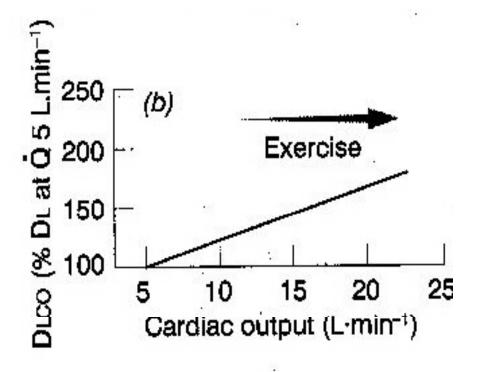
- Imposibilidad de realizar la maniobra
- Angor inestable
- Desprendimiento de retina
- Neumotórax
- Aneurisma
- Cirugía reciente

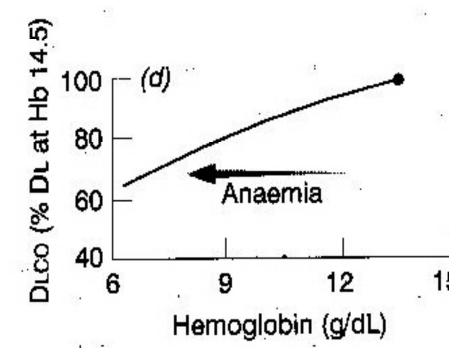
- > Edad
- Patología mental
- > Traqueotomía
- Parálisis facial
- > Alteraciones bucales

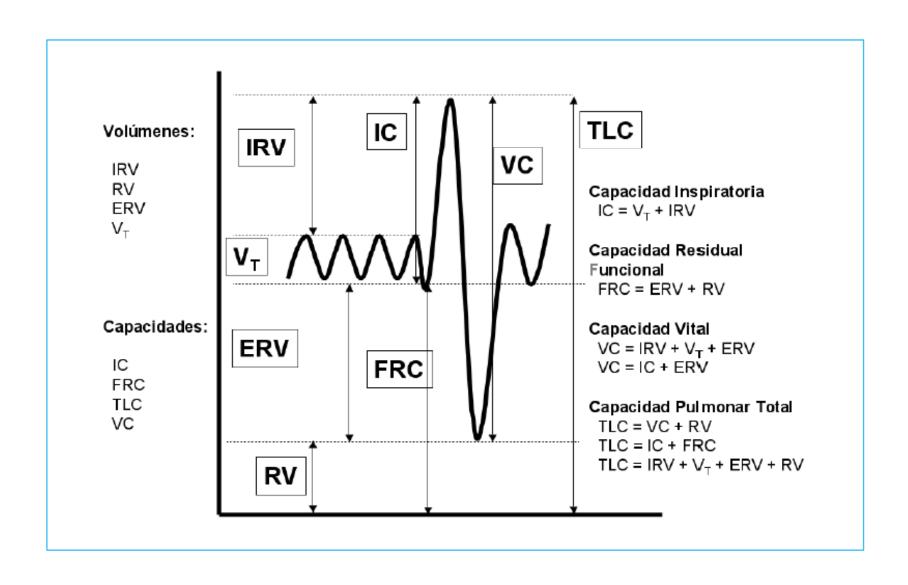

Determinación de la capacidad de difusión: DLCO o TLCO.


- Mide la superficie o área de pulmón disponible para el intercambio de gases
- El gas más utilizado: CO (DLCO ó TLCO)
- Métodos no invasivo:
 - Método de Respiración única (más usado).
 - Método de estado estacionario o rebreathing.
 - Método de exhalación constante.




DLCO: Método de respiración única


- ✓ Requiere colaboración del paciente
- ✓ Equipamiento costoso



Indicaciones

- Monitoreo de tratamiento con agentes tóxicos.
- Diagnóstico y seguimiento de enfermedades intersticiales.
- Detección de compromiso pulmonar en enfermedades sistémicas.
- Monitoreo de hemorragias pulmonares.
- Medición de superficie disponible para intercambio gaseoso.

Volúmenes y capacidades pulmonares

Medición de volúmenes pulmonares

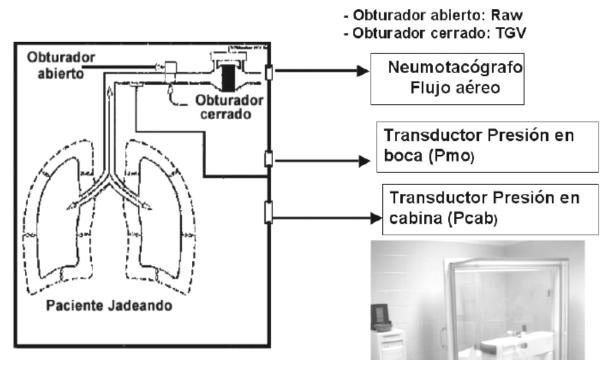
Brindan información indirecta acerca de la resistencia elástica a la distención del parénquima pulmonar

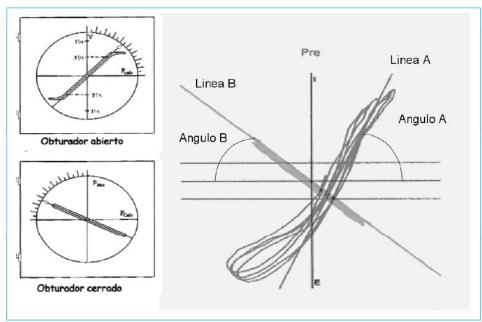
- Pletismografía corporal total
- Dilución de gases
 - -Dilución de Helio
 - -Lavado de Nitrógeno
- Técnicas radiológicas

CRF

VR

CPT


Pletismografía corporal total

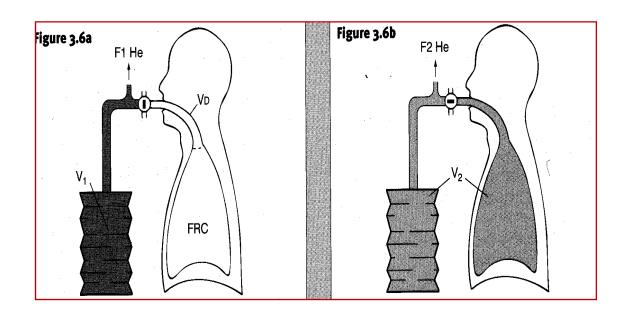

• Ley de Boyle:

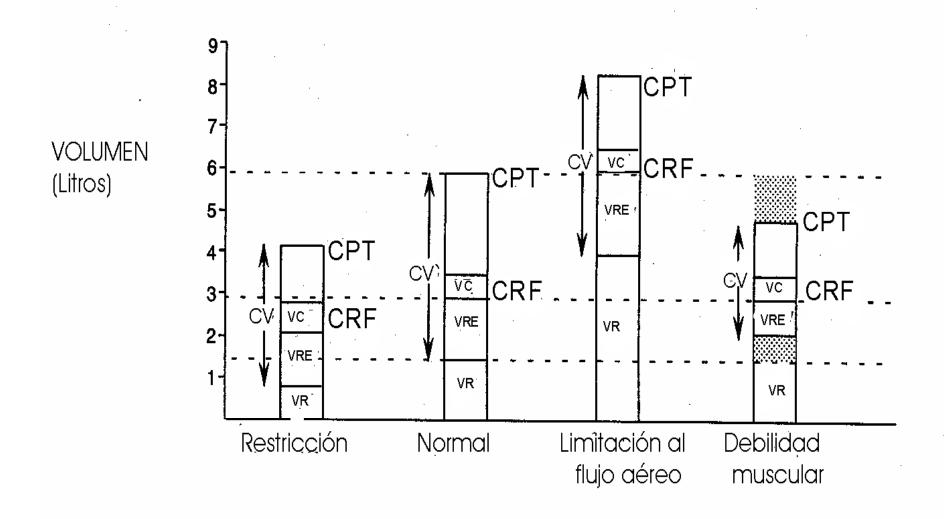
- Permite medir:
 - -Volumen de gas intratorácico comunicado o no conVA (VTG)
 - -Resistencia del Sistema Respiratorio.
- Equipamiento costoso
- Requiere colaboración del paciente

Pletismografía corporal total

Volúmenes pulmonares por dilución de gases

Miden el gas pulmonar comunicado con la VA y que ventila durante la respiración a VC.

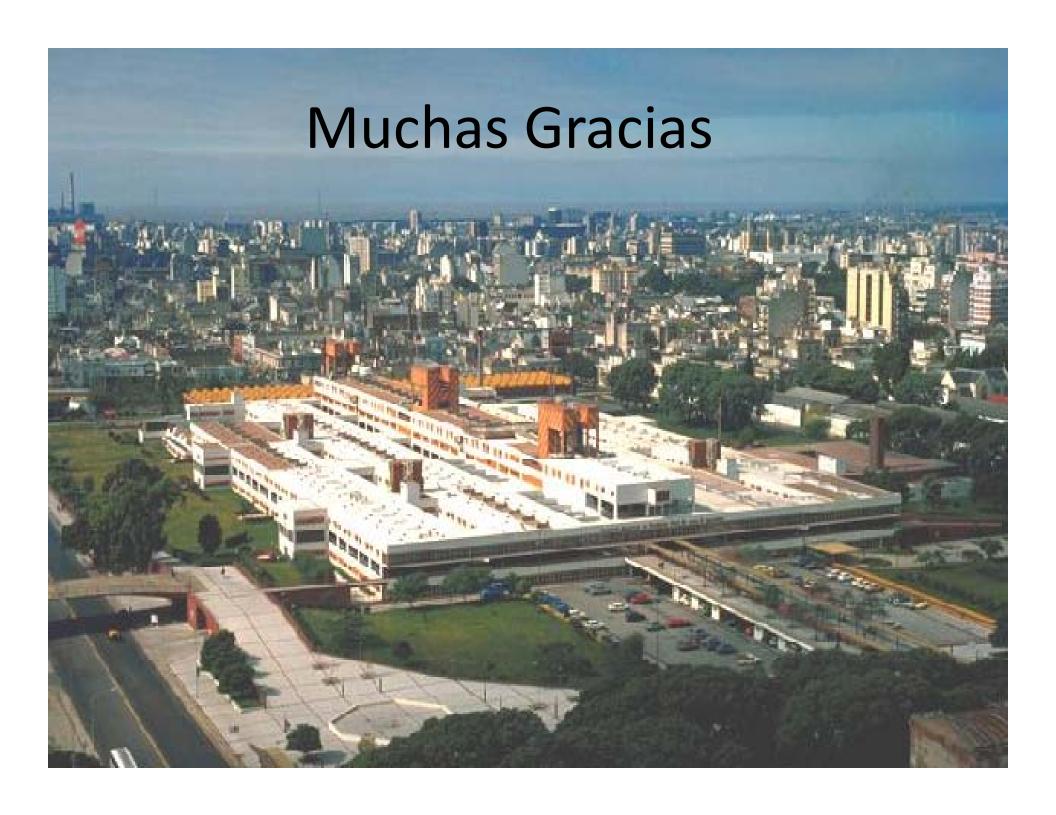

Lavado de nitrógeno


- Paciente respira O2 100% y se recoge el gas exhalado.
- Se mide la concentración de N2. La prueba finaliza cdo la concentración es menor a 1%.
- Permite calcular CRF

Volúmenes pulmonares por dilución de gases

Miden el gas pulmonar comunicado con la VA y que ventila durante la respiración a VC.

Dilución de Helio



Indicaciones para medición de volúmenes pulmonares

- Sospecha de proceso restrictivo
- Sospecha de patrón funcional mixto
- Detección de atrapamiento aéreo
- Detección de respuesta broncodilatadora
- Detección de Obstrucción al flujo aéreo
- Normalización de la medición de resistencia al flujo aéreo.

Conclusiones

- Las PFP constituyen una herramienta fundamental en el diagnóstico, seguimiento y pronóstico de patologías respiratorias
- Deben ser utilizadas criteriosamente teniendo en cuenta la edad y la sospecha diagnóstica
- Es fundamental para su realización e interpretación el seguimiento de guías estandarizadas

