Pulmonary Hypoplasia and Postnatal Lung Growth

Howard B. Panitch, M.D. Division of Pulmonary Medicine The Children's Hospital of Philadelphia

Pulmonary Hypoplasia

Lung Lesion (CPAM)

PHP Enrollment by Diagnosis

Congenital Diaphragmatic Hernia

- 1:2500 4000 live
 births
- 3.3 3.8/10,000
 total births
- 4 types
 - Posterolateral
 - ~90% of all
 - 70-90% left-sided
 - Anterolateral
 - Pars sternalis
 - Morgagni

Pulmonary Abnormalities in CDH

- Lungs physically smaller
- Fewer airway branches
- Fewer terminal units
- Decreased surfactant

- Smaller and fewer arterioles
- Abnormally developed
 - Excessive smooth muscle
 - Abnormal response to O₂

Hislop A and Reid L. Thorax 31:450; 1976

Hypertension

Normal lung, 6 months

Alveolar surface Density (cm-1)

CDH, 7 months

CDH: A Heterogeneous Condition

- Location of hernia
- Degree of pulmonary hypoplasi
- Other organ involvement
 - Cardiac
 - Skeletal
 - Gastrointestinal
- Associated genetic mutations
 - Chromosomal abnormalities
 - Animal models

asia Complete hemi-aplasia

Posterior-medial (includes lumbocostal triangle)

Posterior-lateral (includes lumbocostal triangle)

Anterior-parasterna

(usually not associated with

pulmonary hypoplasia)

Anterior-lateral (may be associated with pulmonary hypoplasia)

Small posterior-lateral

Latera

From Kardon G et al. Dis Model Mech 10:955;2017

Selected Genetic Mouse Models of Abnormal Diaphragm Development

<u>Model</u>	<u>Diaphragm Defect</u>	<u>Human Correlate</u>
C-Met	Amuscular	Unknown
COUP-TFII (Nkx 3.2 conditional model)	Posterior hernia (no sac)	Cytogenetic hotspot 15q26.1-26.2 (D1H1, OMIM #142340) (syndromic)
Fog2 (Zfpm2 ^{lii/lil})	Posterior hernia (sac), muscle patterning defect	de novo mutation (non-syndromic)
Gab 1	Amuscular	Unknown
Gata4 +/-	Central hernia (sac)	Suspected, cytogenetic hotspot 8p23.1
LOX	Central rupture	Unknown
МуоD	Thin, not functional	Unknown
Mogen	Amuscular	Unknown
MyoR/Capsulin	Posterior hernia (?sac)	Unknown
Pax3 (Splotch)	Amuscular	Unknown
$RAR\alpha/RAR\beta^2$ (retinoic acid receptors)	Compound receptor nulls have posterior hernias	Unknown, suspected
Slit3	Central midline hernia (sac)	Unknown
Wt1	Posterior hernia	Syndromic

Adapted from Ackerman KG and Greer JJ. Am J Med Genet Part C Semin Med Genet 145C:109–116; 2007

Morbidity at Discharge and Defect Size

Putnam LR et al. Pediatrics 138:e20162043; 2016

Pulmonary Hypoplasia in CDH: A Two-Hit Hypothesis

- Space occupying lesion
- Embryopathy
- Combination
- ?Accelerated (catch-up) growth?

Giant Omphalocele

Omphalocele 1 in 6,000 live births

- Small, giant, ruptured
- Giant contains most of liver
- High incidence of respiratory insufficiency

Chest Shape in Newborns with Abdominal Wall Defects

	Gastroschesis	Small Omphalocele	Giant Omphalocele
BW (g)	2515 ± 573	3393 ± 949†	2863 ± 566
GA (weeks)	37.4 ± 3.1	38.9 ± 3.8	38.3 ± 2.6
W1/T	1.12 ± 0.08	1.13 ± 0.06	0.97 ± 0.07†
W2/T	0.71 ± 0.06	0.71 ± 0.07	0.65 ± 0.06 †
(H1+H2)/2T	0.68 ± 0.09	0.69 ± 0.06	0.74 ± 0.08
(Ac – Ah)/T	2.55 ± 0.61	2.70 ± 0.51	2.07 ± 0.26‡
†P < 0.001			

‡P < 0.05

Hershenson MB et al. J Pediatr Surg 20:348; 1985

Purported Mechanism of Pulmonary Hypoplasia in GO

Deformation Sequence

Pulmonary Hypertension in GO

- N = 54
 - 34 without PH
 - 20 with PH
 - 9 required long term therapy (sildenafil)
- PH associated with
 - Duration of mechanical ventilation
 - Requirement for tracheostomy
 - Need for bronchodilators
 - Supplemental O₂ at time of NICU discharge

Partridge EA et al J Pediatr Surg 49: 1767; 2014

Postnatal Alveolar Development

Reid LM. Br J Dis Chest 78:12; 1984

3/31/08

4/6/08 POD #2 5/8/08

1 day old

2.5 yrs old

Pulmonary Outcomes at 1 Yr vs Support at 30d

Pulmonary Outcomes at 5 Yr vs Support at 30d

Standard Lung Function Testing

CDH Study Population

- n = 98 (56 males)
- 11 days 44 months
 - 24 <37 wk GA (17 35-36 6/7 wks)
- Support
 - 2 no mechanical ventilation
 - 3 prolonged: 22.2, 25.7 and 52.8 mo
 - In remaining 93, MV 22 <u>+</u> 19 d
 - 53 iNO or sildenafil
 - 20 ECMO

Spirometry

FVC and forced flows were lower than normal FEV_{0.5}/FVC slightly reduced - 23 with FEV_{0.5}/FVC < -1.645 Z scores

Lung Volumes

Z scores	First study $(n=98)$			
Fractional lung volumes				
TLC	$0.439 \pm 1.685^{*}$			
FRC	$3.901 \pm 3.087^{***}$			
RV	$2.350 \pm 2.521^{***}$			
RV/TLC	$0.780 \pm 2.336^{**}$			
	Second study			
	(n=43)			
TLC	0.154 ± 2.657			
FRC	$6.381 \pm 4.337^{***}$			
RV	$4.523 \pm 4.150^{***}$			
RV/TLC	$1.611 \pm 2.180^{***}$			
	Change in Z score			
	from 1st to 2nd study			
	(P-value)			
TLC -	$-0.427 \pm 2.445 \ (0.283)$			
FRC	$2.870 \pm 4.344 \ (< 0.001)$			
RV	$1.922 \pm 3.079 \ (< 0.001)$			
RV/TLC -	$-0.190 \pm 1.851 \ (0.525)$			

Change in Lung Function with Growth

- For every 1.0 ml/cm in healthy controls:
 - FVC increased 0.78 ml/cm
 - FRC increased 1.76 ml/cm
 - RV increased 2.5 ml/cm

3/31/08

4/6/08 POD #2

5/8/08

Forced Expiratory Flows: GO

Danzer E et al. J Pediatr Surg 47:1811; 2012

Lung Volumes: GO

Danzer E et al. J Pediatr Surg 47:1811; 2012

Specific Conductance

Gerhardt T et al. J Pediatr 110:448; 1987

Expiratory

Inspiratory

R=962 mL L=792 mL

TLC= 1596 mL (∆=9%)

Long-Term Pulmonary Follow-up

Ipsilateral Ventilation

Ipsilateral Perfusion

Kamata S et al. J Pediatr Surg 40:1833; 2005

Pulmonary Blood Flow at 2 Years

Pulmonary Blood Flow

From: Weis M et al. AJR 206:1315; 2016

Pulmonary Blood Volume

"New BPD": Arrested Alveolar Development

Agrons GA et al. RadioGraphics 25:1047; 2005

Vascular Growth Factors and Alveolarization

Thebaud B and Abman S. Am J Respir Crit Care Med 175:978; 2007

Alveolar sac in BPD

Alveolar Development and Angiogenesis

SU 5416 - day 14

Control - day 14

Jakkula M et al. Am J Physiol Lung Cell Physiol 279:L600; 2000

Change in FRC and RV Over Time

- n = 29
 - 6 persistent
 PAH
 - 8 PAH first study, normal second study
 - 15 never with
 PAH

Healy F et al. Pediatr Pulmonol 50:672; 2015

PAH and Lung Function

- Presence of PAH resulted in
 - Normal TLC but
 - Elevated RV and FRC
 - Elevated RV/TLC and FRC/TLC
 - Lower forced expiratory flows
 - Lower sGrs
- Persistence of PAH correlated with greater changes

Long-Term Follow-up 26 CDH (10.2 - 16.9 yrs, X = 13.2 yrs) vs. age- and gender-matched controls

Trachsel D et al. Pediatr Pulmonol 39:433; 2005

CDH Adult Survivors

Peetsold MG et al. Pediatr Pulmonol 42:325; 2007

How Will New Therapies Change Outcomes? Fetal Endoluminal Tracheal Occlusion (FETO) for CDH

Deprest J et al. Ultrasound Obstet Gynecol 24:121; 2004

Next Steps: EIT

1. Healthy lung

Lung imaging: Air content

Lung function imaging: Change of air content

Left CDH, Supine

Summary

- Clinical questions regarding pulmonary parenchymal and vascular remodeling remain
 - ?Function of initial cause of hypoplasia
 - ?Role of initial mutation
- Severity of initial impairment predicts long term outcome
- Most survivors do functionally well
 - Bronchospasm/RAD
 - PAH, GERD
- Prenatal and postnatal interventions may be possible to alter the course of disease

Effect of PAH on Lung Function

	Adjusted mean in no PH group (SE) ¹	Difference between PH and no PH groups (SE)	P value
Lung volumes			
TLC z-score	-0.506 (0.327)	1.070 (0.698)	0.1310
FRC z-score	1.703 (0.465)	3.672 (1.052)	0.0009
RV z-score	-0.264 (0.414)	3.709 (1.050)	0.0008
FRC/TLC z-score	1.079 (0.252)	1.534 (0.564)	0.0086
RV/TLC z-score	-1.790 (0.363)	1.843 (0.731)	0.0145
Forced flows			
ln(FVC) z-score	-0.014 (0.222)	-0.597 (0.493)	0.2306
ln(FEV0.5) z-score	-0.005(0.225)	-1.345 (0.506)	0.0101
ln(FEV0.5/FVC) z-score	0.052 (0.238)	-1.369 (0.601)	0.0265
ln(FEF25-75) z-score	0.307 (0.277)	-2.046 (0.619)	0.0016
Tidal mechanics			
$\ln(sCrs)$ ($\ln(1/cm H_2O)$)	-2.876 (0.074)	-0.360 (0.203)	0.0827
Crs/kg (ml/(cm H ₂ O.kg))	1.369 (0.056)	-0.050 (0.172)	0.7730
ln(sGrs) (ln[1/(cmH ₂ O.sec)])	-1.791 (0.057)	-0.513 (0.170)	0.0042

SE, standard error of mean.

¹Adjusted for gender, ECMO use in the neonatal period and age at time of IPFT.

Healy F et al. Pediatr Pulmonol 50:672; 2015