

Howard B. Panitch, M.D. Division of Pulmonary Medicine Children's Hospital of Philadelphia

The New England Journal of Medicine

Copyright, 1967, by the Massachusetts Medical Society

Volume 276

FEBRUARY 16, 1967

Number 7

PULMONARY DISEASE FOLLOWING RESPIRATOR THERAPY OF HYALINE-MEMBRANE DISEASE*

Bronchopulmonary Dysplasia

WILLIAM H. NORTHWAY, JR., M.D., † ROBERT C. ROSAN, M.D., ‡ AND DAVID Y. PORTER, M.D.§

Incidence

- 2 3/1000 live births
- ~1.5% of all newborn births
- 20% of preterms < 30 weeks and <1500 g

- 6%	1251 - 1500 g
- 14%	1001 - 1250 g
- 33%	751 - 1000 g
- 46%	500 - 750 g

Fanaroff AA et al. Am J Obstet Gynecol 196:147.e1; 2007

From: Stoll BJ et al. JAMA 314:1044; 2015

"Severe" BPD—How to Define?

Treatment with Supplemental O₂ for at least 28 days PLUS:

	At 36 wk PMA or at D/C	Relative Incidence	Postdischarge Mortality
Mild	RA	30.3%	1.5%
Moderate	< 30% O2	30.2%	2.0%
Severe (Type 1)	≥ 30% O2 or nCPAP/HFNC	16.4%	4.8%
Severe (Type 2)	Mechanical ventilation		

From: Abman SH et al. J Pediatr 181:12; 2017

Prevalence of sBPD

- "Snapshot" 12/17/13
- NIH criteria at 36 wks PMA
 - FiO2 ≥ 0.30 and/or
 - PPV
- 8 NICUs
 - 710 neonates
 - 351 (49%) <32 wks
 - 128 (36.5%) sBPD
 - 62% PPV at 28 d PMA
 - 41% PPV by 36 wk PMA

Guaman MC et al. Am J Perinatol 32:960; 2015

"Classic" vs. "New" BPD

<u>Classic</u>

- Airways
 - Inflammation
 - Fibrosis
 - Smooth muscle hypertrophy
- Alternating zones of overdistension and atelectasis

New

- Arrest of acinar development
 - (airspace & arteries)
- Lairway epithelial disease
- Isevere vascular disease
- interstitial fibrosis

Old vs. New Severe BPD

Airway Wall Structure in Severe BPD

3 BPD vs SIDS Areas 2,5 - N = 5 / 11 - 75 / 176 airways 2 Inner Wall Ratio 1,5 Outer Wall GA Total Wall Sm Musc 23.8-34.7 wks 0,5 PCA 30.8wk-22mo $\mathbf{0}$ 8 0.5 2

From: Tiddens HAWM et al. Pediatr Pulmonol 43:1206; 2008

Basement Membrane Perimeter

Small Airway Size and Alveolar Wall Attachments

FRC

TLC

Sera T et al. J Appl Physiol 1665; 2004

	Pre	Post	% Pred	% Change	800		
FVC, ml	326	281	24%	-13.8%	0		
FEV 0.5, ml	68	61	8%	-10.3%	es/lu	٨	
FEV 0.5/FVC	0.21	0.22	32%	4.8%	400 ×		
FEF 25, ml/sec	70	59	4%	-15.7%	E		
FEF 50, ml/sec	41	38	3%	-7.3%	10		•
FEF 75, ml/sec	29	24	3%	-17.2%	0	200	400
FEF 85, ml/sec	33	23	7%	-30.3%		Volume, ml	
FEF 25-75, ml/sec	41	37	3%	-9.8%			

			_	
	Pre	Post	% Pred.	% Change
TLC, ml	1991	1913	124%	-3.9%
FVC, ml	258	261	20%	1.2%
ERV, ml	80	128	38%	60%
FRCpleth, ml	1813	1780	338%	-1.8%
RV, ml	1733	1652	560%	-4.7%
RV/TLC	0.87	0.86	414%	-1.1%
FRC/TLC	0.91	0.93		2.2%

Time Constants

 $T = R \cdot C$

2 (or more) Compartment Model

Abman SH and Nelin LD. <u>The Newborn Lung: neonatology questions and controversies.</u> <u>Elsevier 2012; 407-25</u>

Principles of Ventilator Management in Severe BPD

Ventilator Strategies	Targets
Tracheostomy if long term ventilation required	SpO2 92-95%
Larger tidal volumes (10-12 mL/kg)	Permissive hypercapnia
Slower respiratory rates (10-20)	Allow emptying
Longer inspiratory times (≥ 0.6 sec)	Allow filling
PEEP higher, situationally dependent	

Adapted from Abman SH et al. J Pediatr 181:12; 2017

11 mo, 6.9 kg former 24 wks Gestation

- Prolonged steroids, aminophylline
 - ASD s/p closure
- PAH
- VC-SIMV
- V† 50; Ti 0.5; PEEP 7; PS 20/PEEP; IMV 30
 7.24/82/34

Ρ

Identification of PEEPi

Paralyzed or Relaxed

Spontaneous Breathing

Expiratory Hold Maneuver

PEEPi and Patient-Ventilator Asynchrony

Kondili E et al. Br J Anaesth 91:106; 2003

- PEEP increased to 11 cmH₂O
- IMV decreased to 20
 Ti increased to 0.7 sec
- Vt increased to 100mL
- At discharge: 7.42/54/34

3.0

2.5

20

1 6

3.5

5.0

4.5

4.0

$PEEP = 7 \text{ cmH}_2O$

$PEEP = 11 \text{ cmH}_2O$

Factors Contributing to Severe BPD

- Undertreated bronchospasm
- Pulmonary hypertension
- Gastroesophageal reflux (aspiration)
- Tracheobronchomalacia/ Small airway obstruction
- Profound pulmonary hypoplasia

Risk Factors for Developing PAH in BPD

- Extremely low GA
- SGA birthweight
- Oligohydramnios
- Prolonged mechanical ventilation
- Prolonged supplemental oxygen
- Antenatal inflammation

Birth Weight (%ile)

Berkelhamer SK et al. Semin Perinatol 37:124; 2013

Pathophysiology of Vascular Injury

From: Mourani PM and Abman SH. Clin Perinatol 42:839; 2015

Pulmonary Hypertension and Severity of BPD

Mourani PM and Abman SH. Clin Perinatol 42:839; 2015

Pulmonary Hypertension and Survival in BPD

Khemani E et al. Pediatrics 120:1260; 2007

Evaluation and Treatment Guidelines for PH in BPD

Tracy MC and Cornfield DN. Curr Opin Pediatr 29:320; 2017

Pharmacotherapy of PH in BPD

Recommendation	Level of Evidence
Oral sildenafil should be considered for treatment of PH in BPD, especially if iNO is not available	В
IV sildenafil may be considered for treatment of PH in critically ill patients, especially in those with unsatisfactory response to iNO	В
IV prostanoids or inhaled iloprost can be beneficial	В
All infants with proven or suspected PH should receive close follow up, including echocardiography (1/wk initially, 1-2/mo thereafter), lab eval (pro-BNP, BNP, etc) guided by clinical improvement	В
In infants with severe BPD with or without PH, treatment with diuretics can be considered as long as cardiac preload is adequate	В

From: Hilgendorff A et al. Heart 102; ii49; 2016

Outcomes of 102 Ventilator-Dependent Children with BPD

Survival

Liberation

Cristea AI et al. Pediatrics 132:e727; 2013

The Functional "Phenotype"

Mild airway reactivity

Asthma-like disease

Fixed mild obstruction/partially reversible-mild restriction

Moderate obstructive/partially reversible-restrictive disease

Severe obstructive-restrictive disease

Spi	iron	netry
-----	------	-------

FVC	Liters
FEV1	Liters
FEV1/FVC	%
FEF25-75%	L/sec
PEF	L/sec
FEF/FIF50	
FET100%	Sec
FEV.5	Liters

2.26

Spirometry (BTPS)			ATS 🚫		
		Ref	Pre	% Ref	Z-score
FVC	L	4.65	1.06	23	-7.54
FEV1	L	3.95	0.61	15	-8.30
FEV1 / FVC	%	84	58	69	-4.33
FEF25-75	L/s	4.40	0.31	7	-5.01
PEFR	L/s	8.85	3.59	41	-4.44
FET	sec		4.84		
FIF50	L/s		2.02		
FEF50 / FIF50			0.15		
FEV.5	L	2.74	0.47	17	
Back Volume			0.04		

Summary

- Severe BPD remains a significant problem
- Structural changes favor severe OLD
- Infants with sBPD require unique mechanical ventilation strategies
- sBPD is often associated with PAH
- Long-term burden of disease is yet to be determined

