
Hipoxemia permisiva: previniendo ROP y otras morbilidades en el prematuro extremo

Wally Carlo, M.D.
University of Alabama at Birmingham
Department of Pediatrics
Division of Neonatology
wcarlo@peds.uab.edu

Stevie Wonder

Objectives

- 1. Know the results of the SUPPORT RCT arm of lower versus high oxygen saturation targeting
- 2. Be able to apply the results of this trial in your daily practice

Background

- No consensus on targets
- Published "acceptable" levels in neonates are 88-98%
- No standards on assessing "need" in infants
- In contrast, supplemental O₂ "need" assessment is standard in COPD patients

What PaO₂ or SaO₂ should we target?

Does the oxygenation targeting matter?

Recent Trials of Oxygenation Targets

STOP-ROP Trial
BOOST Trial
SUPPORT Trial

SaO₂ Targets: STOP-ROP Trial

Methods

Design: Multicenter RCT, not masked

Patient population: 649 preterm infants with

prethreshold ROP

Treatment group: O_2 sat 96-99% or 89-94%

Primary outcome: Progression to threshold ROP in

at least one eye

STOP-ROP Multicenter Study Group. Pediatrics 105:295, 2000

SaO₂ Targets: STOP-ROP Trial

	Sats	Sats	
	96 to 99%	89 to 94%	p value
Threshold ROP	41%	48%	< 0.05
Pneumonia/BPD exacerbations	s 13%	8%	= 0.07
Prolonged hospitalization*	13%	7%	< 0.05
Prolonged oxygen*	47%	37%	< 0.05
Prolonged diuretics*	36%	24%	< 0.05
Death	3%	2%	NS

^{*} At 3 months corrected age

STOP-ROP Multicenter Study Group. Pediatrics 105:295, 2000

SaO₂ Targets: BOOST Trial

Methods

Design: Multicenter RCT, double blind

Patient population: 358 infants born at < 30 weeks and

oxygen dependent at 32 weeks

Treatment groups: SaO₂ 95-98% or 91-94%

Primary outcome: Growth and neurodevelopment at

12 months corrected age

Askie et al. NEJM 349:959, 2003

SaO₂ Targets: BOOST Trial

	Sats	Sats	
	<u>95-98%</u>	<u>91-94%</u>	<u>p value</u>
Dev abnormality	23%	24%	NS
Weight < 10% tile	33%	37%	NS
Death	5%	3%	NS
O ₂ at 36 w	64%	46%	< 0.001
Home O ₂	30%	17%	< 0.001

Askie et al. NEJM 349:959, 2003

Current O₂ Targets and Practice

Design:

Prospective multicenter observational study

Patient Population: - 84 infants < 28 week, < 96 hours in 14 centers in 3 countries. monitored for 4 weeks

- Birthweight 863 + 208 grams
- Gestational age 26 + 1 week

Hagadorn et al. Pediatrics 118:1574, 2006

Current O₂ Targets and Practice

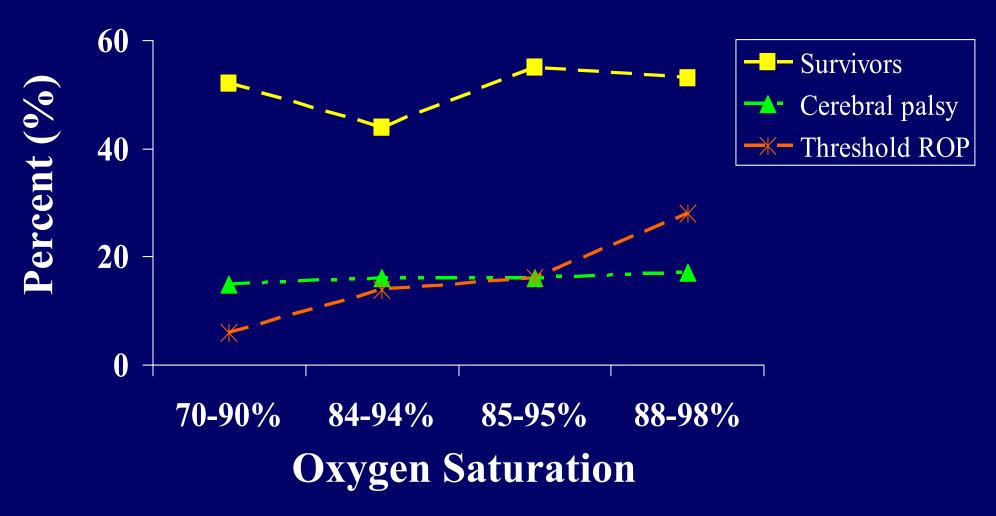
	Targets	Actual
Upper limit	92 to 98%	97% (75 % tile)
Lower limit	83 to 92%	91% (25 % tile)
Range	88%, 95%	95% (median)

Compliance by Center --

16-64%

Thus, compliance varied widely and was generally poor (50%), and achieved saturations are 34% higher than target

Hagadorn et al. Pediatrics 118:1574, 2006


SaO₂ Targets: Retrospective Study

Methods

- Retrospective review
- Population study All babies < 28 weeks in several referral units
- Data analyzed by SaO₂ targets

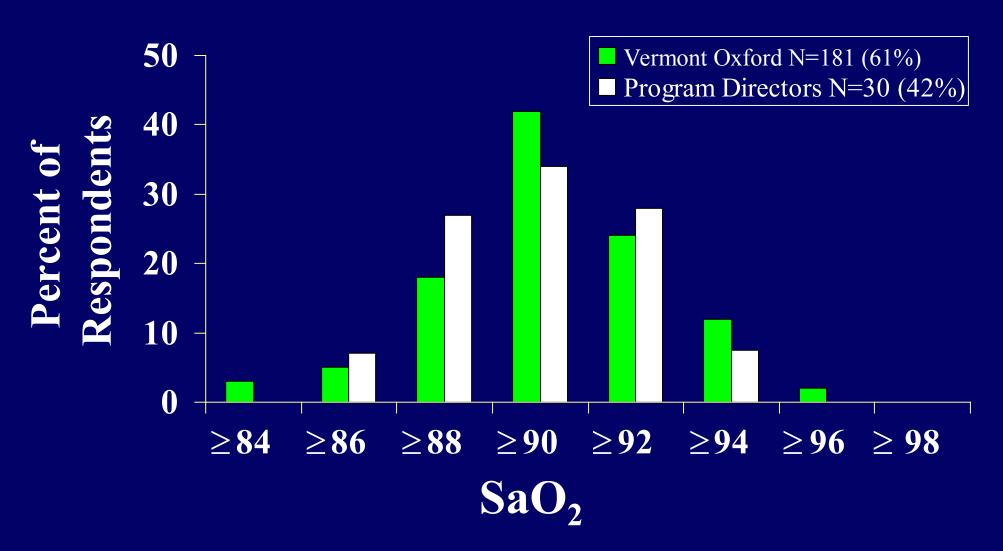
Tin et al. Arch Dis Child. 84:F106, 2001

SaO₂ Targets: Retrospective Study

Tin et al. Arch Dis Child. 84:F106, 2001

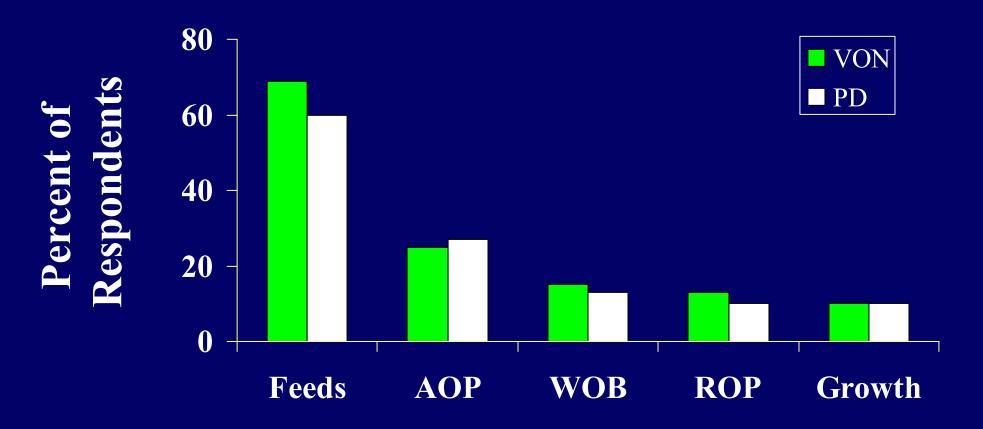
SaO₂ Targets: Expert Opinion

Methods

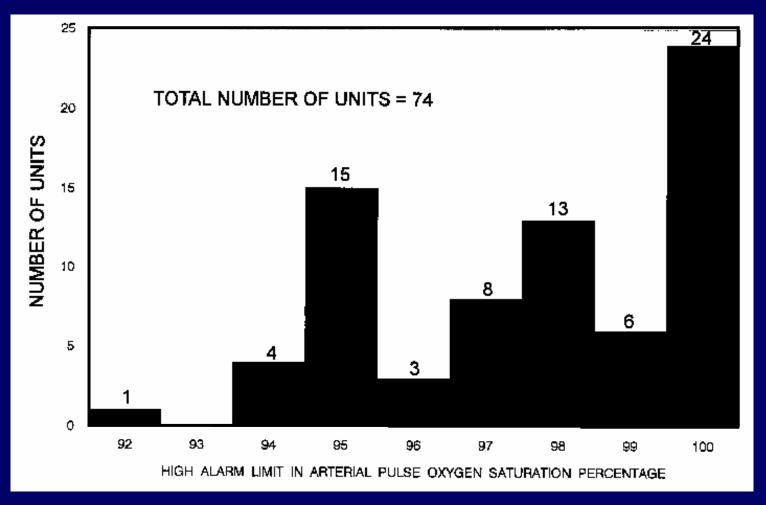

Design: Survey of VON Centers and ONTPD

Respondents: 181 (61%) VON Centers and 30

(42%) PD


Ellsbury et al. J Pediatr 140:247, 2002

SaO₂ Targets: Expert Opinion


Ellsbury et al. J Pediatr 140:247, 2002

Indications for Supplemental Oxygen

Ellsbury et al. J Pediatr 140:247, 2002

Value at Which High Arterial Pulse Oxygen Saturation Alarm is Set

Randomized Trial of Oxygen Saturation Targets in Premature Infants - the SUPPORT Trial

The SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network

Background

- Retinopathy of prematurity (ROP) continues to be an important cause of blindness in preterm infants
- Recent observational data suggest that oxygen saturations in the lower limits of common clinical practice (83 or 85%) may reduce ROP but this has not been tested in RCTs
- Furthermore, in RCTs of oxygen supplementation to reduce ROP conducted in the 1950s, restriction of oxygen supplementation resulted in an increased mortality in infants in the lower oxygen group

Hypothesis

A lower O₂ saturation target range (85 to 89%)

compared to

a higher O₂ saturation target range (91 to 95%)

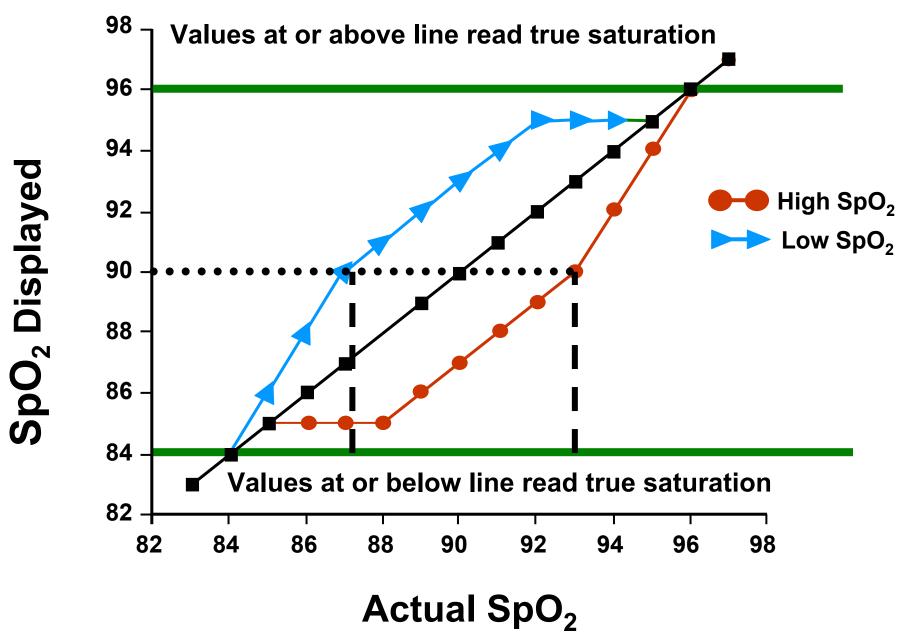
reduces

the incidence of the composite outcome of severe ROP or death

among

infants of 24 ^{0/7} to 27 ^{6/7} weeks gestational age

Method – Patients


- Inborn infants of 24 ^{0/7} to 27^{6/7} weeks gestation for whom a decision had been made to provide full resuscitation were eligible
- Parental consent was obtained antenatally
- Enrollment was conducted from February 2005 to February 2009
- Randomization was stratified by center and by gestational age:
 - 24 and 25 weeks
 - -26 and 27 weeks

Methods – Intervention (1)

- Infants were randomized to:
 - -lower saturation targeting (85 to 89%) or;
 - -higher saturation targeting (91 to 95%)
- Oxygen saturations were monitored with electronically-altered Masimo Radical Pulse Oximeters

SpO ₂ Group	Displayed	Actual Target	Alarm Values
Low SpO ₂	88-92%	85-89%	<84 and >96%
High SpO ₂	88-92%	91-95%	<84 and >96%

Actual vs Low and High Reading SpO₂

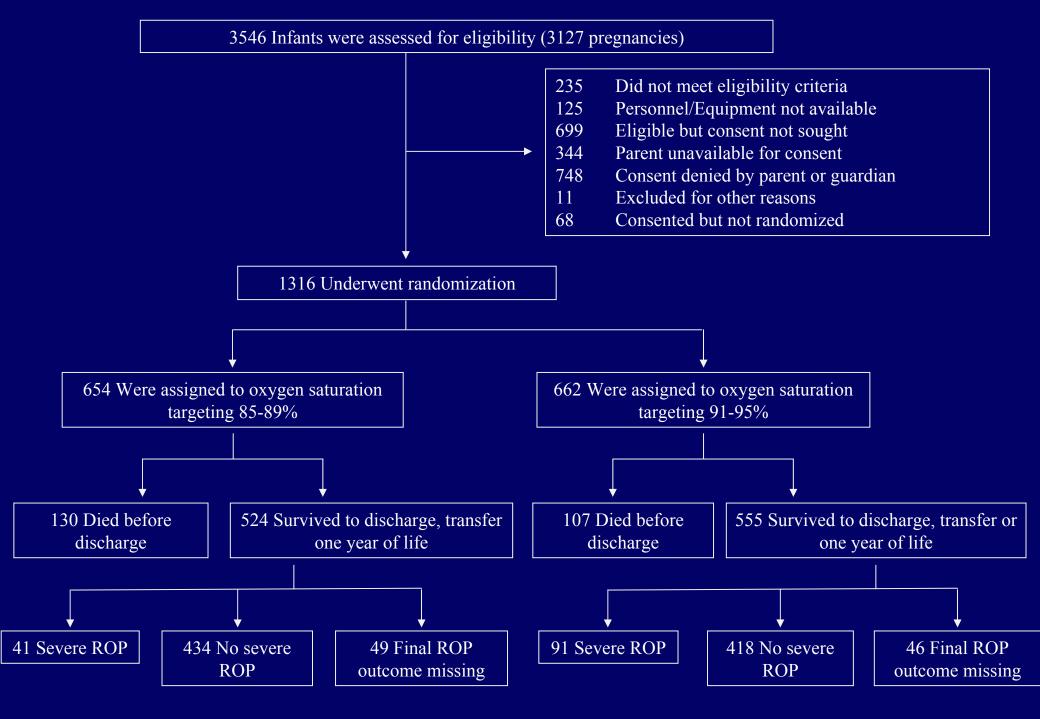
Recent Trials of Oxygenation Targets

	Experimental	Control
SUPPORT	85-89%	91-95%
STOP-ROP	96-99%	89-94%
BOOST	95-98%	91-94%

Methods – Intervention (2)

- Oxygen saturation targeting was initiated within the first two hours after birth and was continued until 36 weeks post-menstrual age or until the infant remained on room air and off the ventilator/CPAP for >72 hours, whichever occurred first
- Adjustments in supplemental oxygen to maintain the displayed saturation within the target range of 88 to 92% were performed by the clinical staff, not the researchers

Methods – Factorial Design


Infants were also randomized to CPAP started at birth or intubation with surfactant

Methods – ROP Assessments

- Trained ophthalmologists followed the infants until the study endpoint of severe retinopathy *or* fully vascularized retinas *or* immature vessels in zone III for two consecutive exams in each eye were documented
- Severe retinopathy was defined as:
 - threshold retinopathy if any of the following were present:
 - In zone I: stage 3 ROP; plus disease with any stage of ROP or
 - In zone II: plus disease with stage 2 or 3 ROP or
 - If ophthalmologic surgery and/or bevacizumab ROP treatment was used

Methods – Sample Size Monitoring and Analysis

- Based on an absolute difference of 10% in the primary outcome, sample size was 1310
- An independent DSMC reviewed primary outcomes and adverse events at 25%, 50%, and 75% of outcome assessment
- The DSMC evaluated compliance with oxygen saturation targeting
- Adjustment was performed for pre-specified stratification (center and GA) and for familial clustering as multiple births were randomized to the same treatment arms

Results – Patient Population*

Lower Saturation			
Group			
(N = 654)			

Higher Saturation Group (N = 662)

Birth weight

Gestational age

Race, White/Black/Hispanic

Antenatal corticosteroids

*All p values >0.05

Multiple births

836±193 grams

26±1 weeks

37/39/20%

96.8%

24.6%

825±193 grams

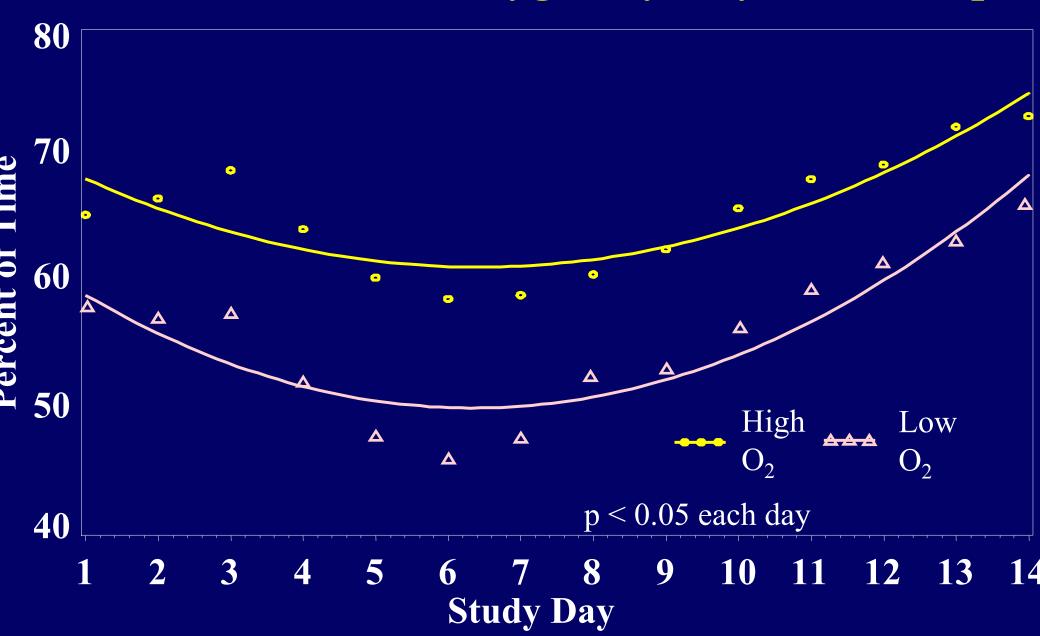
26±1 weeks

42/35/19%

95.6%

26.6%

Actual Median Oxygen Saturation (%)

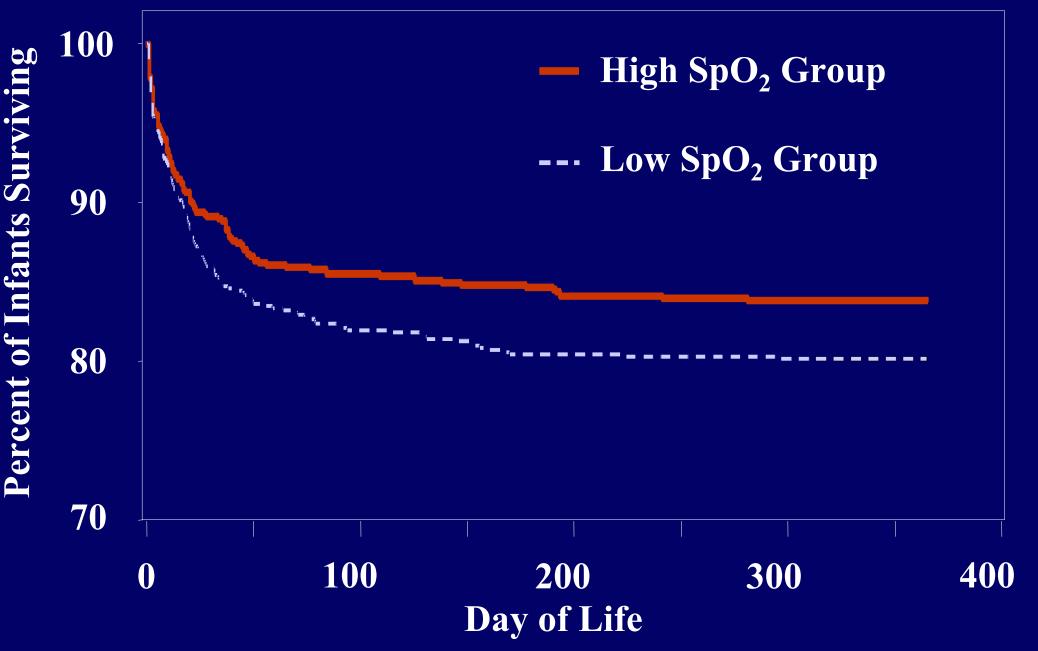

Mean Percent of Time Spent in SpO₂ Ranges While on Supplemental Oxygen

SpO_2	Lower Saturation	Higher Saturation	p value
range	Group	Group	
	Mean % of time in	Mean % of time in	
	range (95% CI)	range (95% CI)	
>96%	20.1 (18.8, 21.3)	23.2 (22.0, 24.5)	0.001
<85%	7.3 (6.6, 8.1)	5.5 (4.8, 6.3)	0.001
<75%	4.5 (3.8, 5.2)	3.6 (2.9, 4.3)	0.049
<70%	2.5 (1.9, 3.1)	2.1 (1.5, 2.7)	0.409

Median Percent of Time Spent in SpO₂ Ranges While on Supplemental Oxygen

SpO ₂ range	Lower Saturation Group Median % of time in range	Higher Saturation Group Median % of time in range	p value
>96%	16.0	19.6	< 0.001
<85%	5.9	3.9	< 0.001
<75%	3.3	2.1	< 0.001
<70%	1.5	0.9	< 0.001

Percent of Time on Oxygen by Day and Group


Results – Primary Outcome

	Lower Saturation Group N=654	Higher Saturation Group N=662	Adjusted Relative Risk (95% CI)	
Severe ROP/death	28.3%	32.1%	0.90 (0.76, 1.06)	
Severe ROP	8.6%	17.9%	0.52 (0.37, 0.73)	NNT=11
Death	19.9%	16.2%	1.27 (1.01, 1.60)	NNH=27

Results – ROP Adjudication Analysis

	Lower Saturation Group N=654	Higher Saturation Group N=662	Relative Risk for Low SpO ₂ vs. High SpO ₂ (95% CI)	
Severe ROP	8.6%	17.9%	0.52 (0.37, 0.73)	NNT=1
Severe ROP with adjudication (98.6%)	8.0%	16.6%	0.52 (0.37, 0.73)	NNT=12
Severe ROP with ROP if lost to F/U (100%)	10.1%	17.5%	0.62 (0.45, 0.84)	NNT=14

Survival Curve

Results – BPD and Other Pulmonary Outcomes

	Lower	Higher	Adjusted
	Saturation	Saturation	Relative Risk
	Group	Group	(95% CI)
	N=654	N=662	
BPD (O ₂ use at 36 w)	37.6%	46.7%	0.82 (0.72, 0.93)
BPD (O ₂ use) or death, 36 w	48.5%	54.2%	0.91 (0.83, 1.01)
BPD (phys), 36 w	38.0%	41.7%	0.92 (0.81, 1.05)
BPD (phys) or death, 36 w	48.8%	50.0%	0.99 (0.90, 1.10)
Pneumothorax	7.2%	6.5%	1.12 (0.74, 1.68)
Any air leaks (14 days)	7.8%	6.3%	1.23 (0.83, 1.83)
Postnatal steroids for BPD	9.6%	10.7%	0.91 (0.67, 1.24)

Results – PDA

	Lower	Higher	Adjusted
	Saturation	Saturation	Relative Risk
	Group	Group	(95% CI)
	N=654	N=662	
PDA	47.9%	50.0%	0.96 (0.86, 1.07)
Medical R _x for PDA	34.5%	36.1%	0.95 (0.82, 1.09)
Surgical R _x for PDA	11.4%	10.5%	1.09 (0.80, 1.48)

Results – Other Major Outcomes

	Lower Saturation Group N=654	Higher Saturation Group N=662	Adjusted Relative Risk (95% CI)
VH, grade 3 or 4	13.2%	12.7%	1.06 (0.80, 1.40)
PVL	3.8%	4.7%	0.83 (0.49, 1.42)
NEC, stage ≥ 2	11.9%	10.8%	1.11 (0.82, 1.51)
Late onset sepsis	36.5%	35.6%	1.03 (0.89, 1.18)

Summary

- O₂ saturation targeting in the range of 85-89% did not affect severe ROP/death
- O_2 saturation targeting in the range of 85-89% resulted in a significant reduction in severe ROP (17.9 to 8.6%, NNT = 11)
- However, mortality was significantly increased in the 85-89% target group (19.9 versus 16.2%, NNH = 27)

Conclusions

- Lower oxygen saturation targeting, as conducted in this trial, did not reduce severe ROP/death
- Lower oxygen saturation targeting, as conducted in this trial, decreased severe ROP
- The potential to reduce the risk of severe ROP must be carefully weighed against the possibility of increased risk of death
- Follow up of these infants and data from the similarly designed ongoing trials will be important

Take Home Message

- Current SaO₂ targets and high alarm limits are too high
- Most current data suggest that oxygen saturation in the low 90s is sufficient to preterm infants
- Additional oxygen supplementation increases
 ROP and may worsen pulmonary outcomes
- Lower oxygen supplementation may increase the risk for mortality

Consider Changes in Practice

- Use high saturation alarm at 95% if the baby is on oxygen supplementation and at 99% if the baby is on room air, but at risk for getting oxygen.
- Do physiologic assessment of oxygen "needs" as daily practice.

Thanks to the many infants, parents, and NICU staff

Thanks to the members of the Neonatal Research Network

NICHD Neonatal Research Network Centers (2005-2009)

- Brown University
- Case Western Reserve University
- Duke University
- Emory University
- Indiana University
- RTI International
- Stanford University
- Tufts Medical Center
- University of Alabama –
 Birmingham

- University of California San Diego
- University of Cincinnati
- University of Iowa
- University of Miami
- University of New Mexico
- University of Rochester
- University of Texas, Southwestern Dallas
- University of Texas Houston
- University of Utah
- Wake Forest University
- Wayne State University
- Yale University

