

Whats Cool in HIE!

Patrick McNamara, MD Staff Neonatologist, Hospital for Sick Children, Toronto

Declaration of Disclosure

I have no actual or potential conflict of interest in relation to this program.

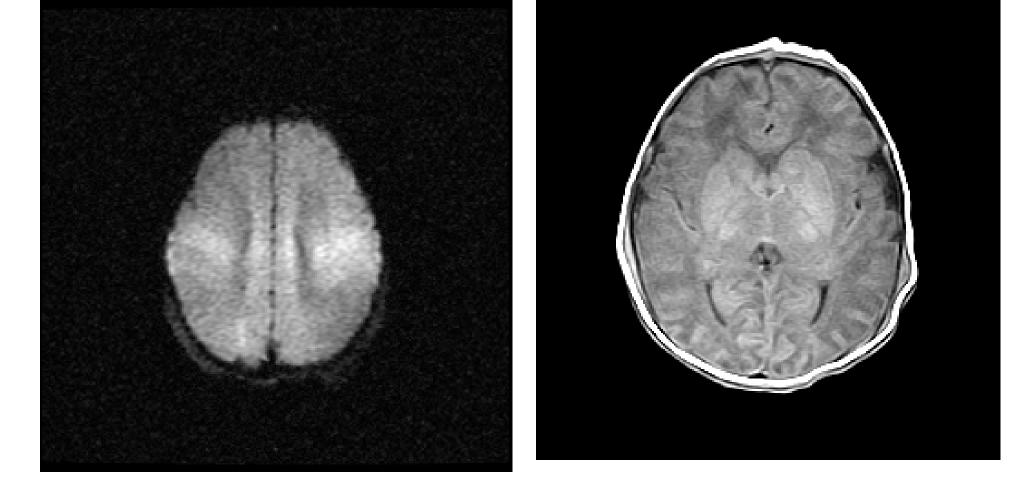
I also assume responsibility for ensuring the scientific validity, objectivity, and completeness of the content of my presentation.

Patrick McNamara, MD

Learning Objectives:

At the end of this session, you will be able to:

- Understand the benefits/limitations of Therapeutic Hypothermia and how it works?
- Identify patients who may benefit from treatment.


Scenario I

Full term maleBirth weight 3.43 KgMeconium stained liquorFetal bradycardia to 60High forceps delivery \rightarrow CPR for 20 minsCord pH 6.91Apgars 1¹ 1⁵ 2¹⁰ 7¹⁵

Transferred from Level II community hospital

Severe Encephalopathy with Intractable seizures \rightarrow Phenobarbitone & mizadozalam

EEG: Severely abnormal trace with global low voltages

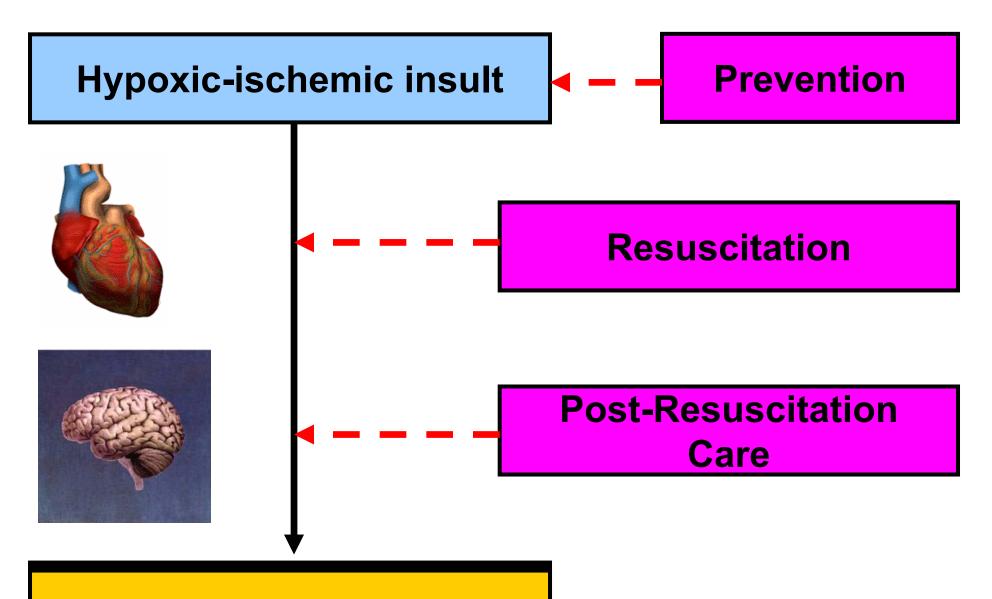
- MRI: Diffuse hypoxic-ischemic changes
- ICU support withdrawn on day 3 of life

Hypoxic-ischemic Encephalopathy

• Intrapartum hypoxia 3-5/100 live births

Levene 1986 Lancet

- Complicates ~1/1000 live births
 - Neurological sequelae: > 25%
 - Mortality: 10-60% (23% of global neonatal deaths)


Vannuci 1990 Pediatrics

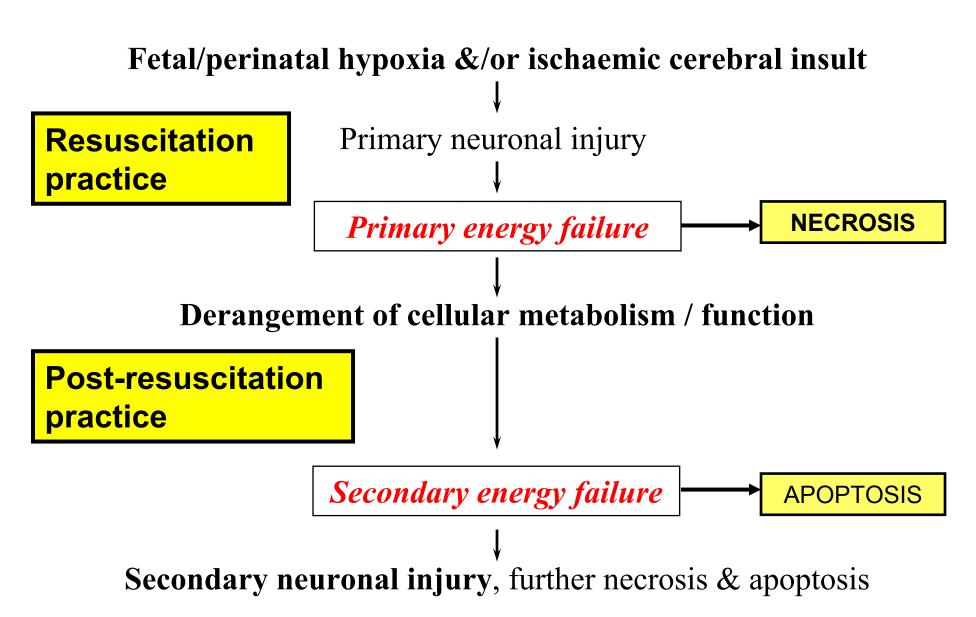
• HIE accounts for 20-30% cerebral palsy

Hagberg 2001 Acta Paed

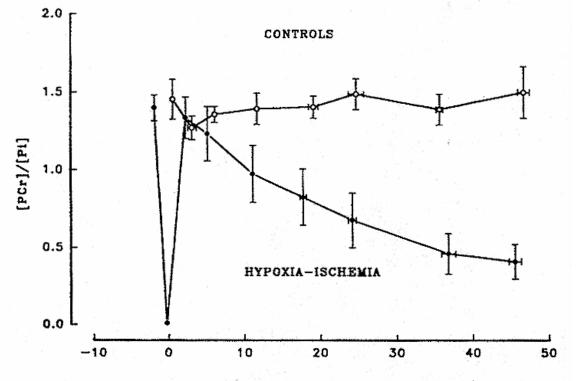
• Burden: Lifetime cost: \$5,000,000 for care worldwide

Is there an opportunity to intervene?

Improved Outcome


Resuscitation Data

	Neonate	Child	Adult
Oxygen	Yes *	No	No
Ventilation	No	No	Yes
Chest compressions	No	No	Yes
Epinephrine	No	Yes *	Yes *
Sodium Bicarbonate	No	No	Yes *


Established Insult

But if the horse has bolted.....

Pathophysiology

Hypothermia & Delayed Energy Failure

Time from start of resuscitation (hours)

Figure 3. [PCr]/[Pi] in the control group (n = 6) and the experimental group of piglets whose brains were subjected to acute hypoxia-ischemia (n = 12). Values are means and SEM.

Pediatr Res 1994;36:699-706

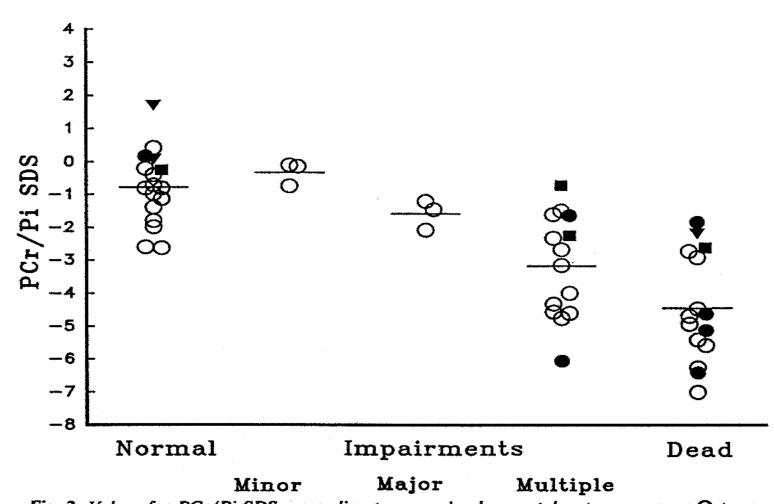
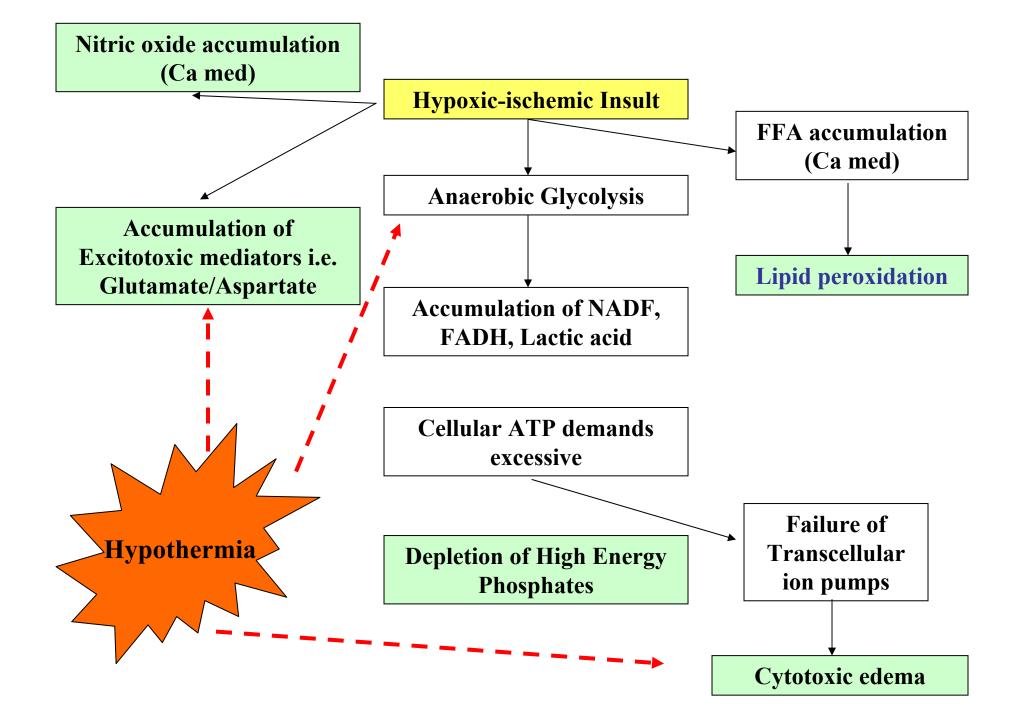


Fig. 2. Values for PCr/Pi SDS, according to neurodevelopmental outcome group: O term AGA infants; ● term SGA infants; ▼ preterm AGA infants; □ preterm SGA infants.

Dev Med and Child Neurol 1992;34:285-295

Abnormal outcome is related to abnormal brain cellular metabolism.....

Is brain injury reversible?


Neuroprotective therapies

Pharmacological

- Oxygen free radical scavengers (i.e Vit E, Vit C, allopurinol, indomethacin)
- Excitatory AA antagonists (i.e NMDA, MK801)
- Calcium channel blockers (i.e. nicardipine, flunarizine)
- Inhibition of NO production (NOS inhibitors)
- Corticosteroids
- Barbiturate coma (phenobarbitone, Thiopental)

Non-Pharmacological

- Hyperglycemia (conflicting rodent vs porcine data)
- Therapeutic hypercapnia

An Era of Cooling

- <u>Westin B</u>, Miller JA, Nyberg R, Wedenberg E Neonatal asphyxia pallida treated with hypothermia alone or with hypothermia and transfusion of oxygenated blood. *Surgery.* 1959; 45:868-879
- <u>Westin B</u>, Nyberg R, Miller JA, Wedenberg E. Hypothermia and transfusion with oxygenated blood in the treatment of asphyxia neonatorum. *Acta Paediatr Scand.* 1962;(suppl)139:1-80
- <u>Westin B</u> Infant resuscitation and prevention of mental retardation. *Am J Obstet Gynecol.* 1971; 110:1134-1138 [

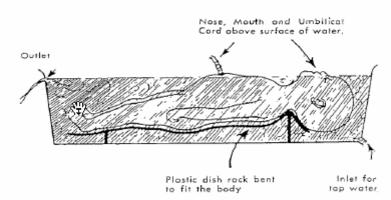


Figure 1. The immersion bath used by Westin et al. [33] to resuscitate and cool newborn infants who were unresponsive (Apgar 0–3) after 5 min. Infants were taken out of the cold bath when breathing resumed. Reproduced with permission from the publisher.

The influence of the thermal environment upon the survival of newly born premature infants

<u>WA Silverman</u>, JW Fertig and AP Berger 3975 Broadway, New York 32, New York.

Pediatrics, Nov 1958, 876-886, Vol 22, No. 5 Copyright © 1958, American Academy of Pediatrics

• "Survival overall was 68% in the hypothermic group vs 83% in the warmer incubators".

• Majority of the effect was in infants with birth weights <1000 g

Hypothermia & Brain Cell death

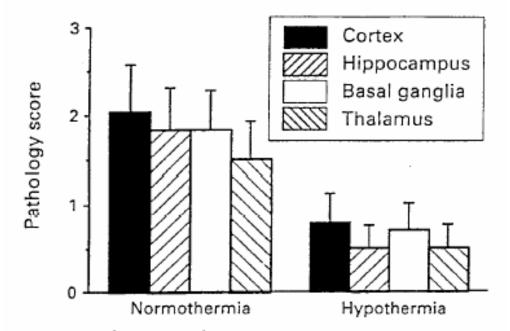
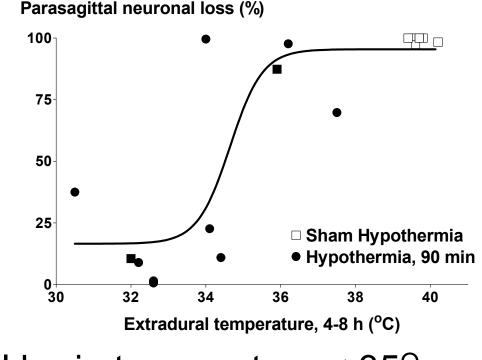
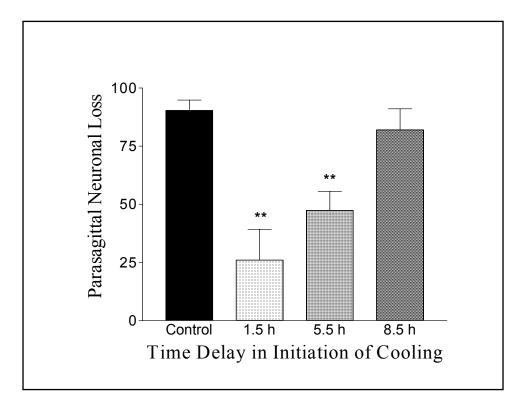



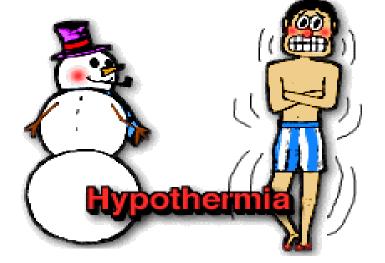
Figure 3. The total pathology score (mean + SEM) in different regions of the brain of newborn rats who survived 1 week after an experimental H-I insult and were randomized to normothermia or hypothermia (32°C) for the first 3 h after the insult. There is significant protection by hypothermia in all regions of the brain [16]. Reproduced with permission from the publisher.

Thoreson 1996 Arch Dis Child


Mechanics I Magnitude of Hypothermia

Critical depth of cooling (Deep brain structures)
 – 1°C fall = ↓ Cerebral metabolic rate 6-7%

Critical brain temperature < 35^o


Mechanics II 'Temporal Window of Opportunity'

 Neural protection is long lasting, <u>but</u> benefit is reduced if cooling is delayed.

Duration of cooling

- Long enough to prevent, not delay cell loss
- Continued throughout period of secondary energy failure [Presumption 72 hours]
 - Seizures on rapid rewarming fetal ovine data
 - Extrapolation to the human [heterogenous insult] is difficult

Summary

Cell death is preventable

.....but only if applied <u>early</u> and a <u>critical</u> <u>temperature range</u> is achieved

Is Hypothermia Effective in Humans?

Hypothermia

Whole Body

Selective Head

Cooling blanket

Coolcap method

ICE trial method

The NEW ENGLAND JOURNAL of MEDICINE

HOME SEARCH CURRENT ISSUE PAST ISSUES COLLECTIONS HELP

Institution: UNIVERSITY OF TORONTO LIBRARY | Sign In as Individual | Contact Subscription Administrator at Your Institution | FAQ

ORIGINAL ARTICLE

▲ <u>Previous</u>Volume 353:1574-1584 <u>October 13, 2005</u> Number 15<u>Next</u>

Whole-Body Hypothermia for Neonates with Hypoxic–Ischemic Encephalopathy

 Seetha Shankaran, M.D., Abbot R. Laptook, M.D., Richard A. Ehrenkranz, M.D., Jon E. Tyson, M.D., M.P.H., Scott A. McDonald, B.S., Edward F. Donovan, M.D., Avroy A. Fanaroff, M.D., W. Kenneth Poole, Ph.D., Linda L. Wright, M.D., Rosemary D. Higgins, M.D., Neil N. Finer, M.D., Waldemar A. Carlo, M.D., Shahnaz Duara, M.D., William Oh, M.D., C. Michael Cotten, M.D., David K.
 Stevenson, M.D., Barbara J. Stoll, M.D., James A. Lemons, M.D., Ronnie Guillet, M.D., Ph.D., Alan H. Jobe, M.D., Ph.D., for the National Institute of Child Health and Human Development Neonatal

Reduction in death or moderate/severe disability from 62% (n=64) to 42% (n=45) with whole body cooling

W

Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial

Pet er D Gluckman, John S Wyatt, Denis Azzopardi, Roberta Ballard, A David Edwards, Donna M Ferriero, Richard A Polin, Charlene M Robertson, Lancet 2005; 365: 663-70 Marianne Thoresen, Andrew Whitelaw, Alistair J Gunn, on behalf of the Cool Cap Study Group See Comment page 632

<u>No difference</u> in death or moderate/severe disability between control [66%, (n=73)] and selective head cooling group [55%, (n=59)]

Hypothermia : Overview

Death / Disability

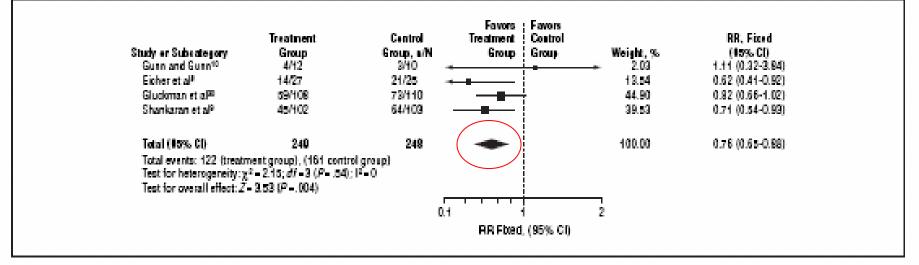


Figure 2. Death or moderate to severe neurodevelopmental disability in survivors. Cl indicates confidence interval; RR, relative risk.

Shah 2007 Arch Pediatr

Table 2. Main Neurodevelopmental Outcomes at 18 Months.						
Outcome	Cooled Group	Noncooled Group	P Value	Relative Risk (95% CI)		
	no./total no. (%)					
Primary outcome						
Combined death and severe neurodevelopmental disability	74/163 (45)	86/162 (53)	0.17	0.86 (0.68–1.07)		
Secondary outcomes*						
Death	42/163 (26)	44/162 (27)	0.78	0.95 (0.66–1.36)		
Severe neurodevelopmental disability	32/120 (27)	42/117 (36)	0.13	0.74 (0.51–1.09)		
Survival without neurologic abnormality	71/163 (44)	45/162 (28)	0.003	1.57 (1.16–2.12)		
Multiple neurodevelopmental disabilities	21/112 (19)	33/110 (30)	0.05	0.63 (0.39–1.01)		
BSID-II Mental Developmental Index score			0.03 for trend			
<70	28/115 (24)	38/110 (35)	0.09	0.70 (0.47–1.06)		
70–84	6/115 (5)	12/110 (11)				
≥85	81/115 (70)	60/110 (55)	0.01	1.29 (1.05–1.59)		
BSID-II Psychomotor Developmental Index score			0.03 for trend			
<70	27/114 (24)	37/109 (34)	0.09	0.70 (0.46–1.06)		
70–84	9/114 (8)	14/109 (13)				
≥85	78/114 (68)	58/109 (53)	0.02	1.29 (1.04–1.60)		
GMFCS score			0.01 for trend			
No abnormality	85/120 (71)	63/117 (54)	0.007	1.32 (1.07–1.61)		
1–2	11/120 (9)	18/117 (15)				
3–5	24/120 (20)	36/117 (31)	0.06	0.65 (0.41-1.02)		
Cerebral palsy	33/120 (28)	48/117 (41)	0.03	0.67 (0.47-0.96)		
Hearing loss not corrected by aids	4/114 (4)	7/108 (6)	0.31	0.54 (0.16–1.80)		
No useful vision	8/119 (7)	12/114 (11)	0.30	0.64 (0.27–1.50)		
Seizures requiring anticonvulsant agents at time of assessment	12/116 (10)	16/116 (14)	0.42	0.75 (0.37–1.51)		
Head circumference at follow-up >2 SD below the mean	24/114 (21)	28/112 (25)	0.48	0.84 (0.52–1.36)		

TRIAL

TOBY

Azzopardi 2009 NEJM

Whole-body hypothermia for term and near-term newborns with hypoxic-ischemic encephalopathy.

A randomized controlled trial

Susan E. Jacobs, M.D., Colin J. Morley, M.D., Terrie E. Inder, M.D., Michael J. Stewart,
M.D., Katherine R. Smith, MBiostat., Patrick J. McNamara, M.D., Ian M.R. Wright, M.D.,
Haresh M. Kirpalani, M.D., Brian A. Darlow, M.D., Lex W. Doyle, M.D., for the ICE
Collaboration.

OUTCOMES ICE TRIAL

Outcome

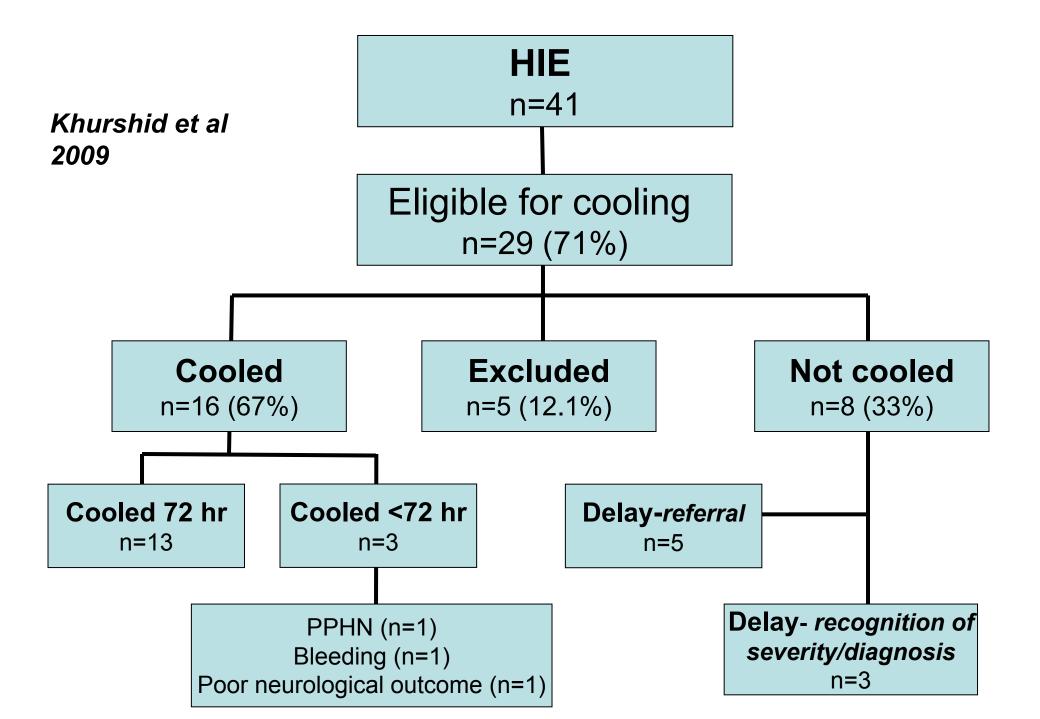
Concome	000	Control	RISK Rado	r value
	Group	Group	(95% CI)	
	n/total	n (%)		
Primary outcome				
Death or major disability	55/107 (51.4)	67/101 (66.3)	0.77 (0.62, 0.98)	0.03
Encephalopathy at				
assessment:				
Mild	4/16 (25.0)	8/24 (38.1)	0.53 (0.17, 1.66)	0.27
Moderate	26/62 (42.6)	34/54 (66.7)	0.64 (0.45, 0.91)	0.01
Severe	25/30 (83.3)	24/29 (88.9)	0.94 (0.76, 1.15)	0.54
Moderate or severe	51/92 (55.4)	58/83 (69.9)	0.75 (0.60, 0.94)	0.01
Secondary outcomes				
Death	27/108 (25.0)	42/109 (38.5)	0.65 (0.43, 0.97)	0.04
Major sensorineural disability	28/80 (35.0)	25/59 (42,4)	0.83 (0.54, 1.26)	0,37
Neuromotor delay	23/79 (29.1)	19/59 (32,2)	0.90 (0.55, 1.50)	0.70
Cerebral palsy	21/79 (26.6)	17/59 (28.8)	0.92 (0.54, 1.59)	0.77
Moderate or severe CP	16/79 (20,3)	13/59 (22,0)	0.92 (0.48, 1.76)	0.80
GMFCS 2-5	16/79 (20,3)	12/58 (20,7)	0.98 (0.50, 1.91)	0.95
Motor score on Bayley scales	19/73 (26.0)	14/50 (28.0)	0.93 (0.52, 1.68)	0.81
<-2 SD				
Developmental score on	17/73 (23.3)	14/50 (28,0)	0.83 (0.45, 1.53)	0,55
Bayley scales <-2 SD				
Legal blindness	1/78 (1.3)	0/58 (0)		0.99
Survival free of any disability	42/106 (39.6)	22/97 (22.7)	1.75 (1.13, 2.70)	0.01

Cool

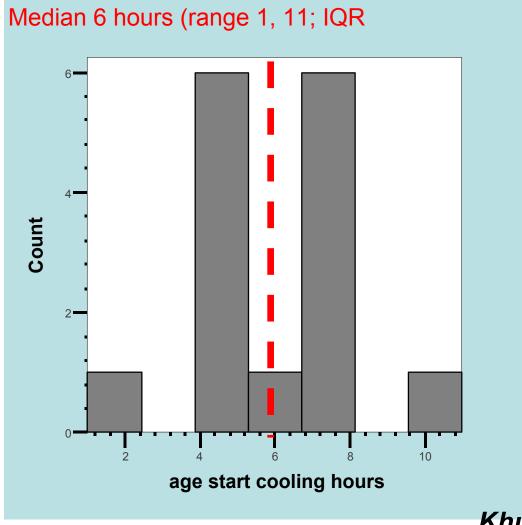
Control

Risk Ratio

P V alue


Jacobs 2010 PAS

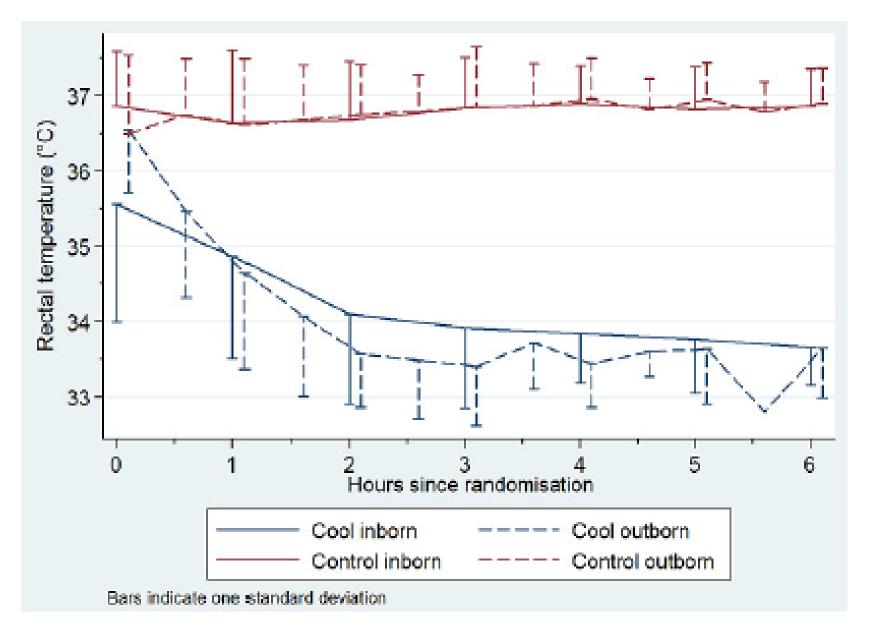
Cooling in Toronto


- ICE TRIAL terminated in 2008 on the basis of loss of equipoise
- ICE method in transport
- Blanketrol III in NICU
- Cooling offered at all three tertiary sites
- 40-50 cases per year

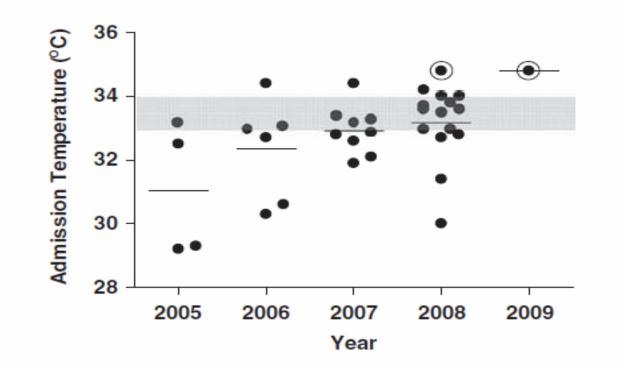
Inclusion criteria

- < 6 hours (maximum of 12 hours)
- > 35 weeks gestational age
- Evidence of intrapartum hypoxia
 - Apgar score < 5 at 10 minutes
 - need for mechanical ventilation or resuscitation beyond 10 minutes,
 - cord pH < 7 or arterial pH < 7, base deficit > 16 within
 60 minutes of birth.
- Moderate or severe encephalopathy

Hypothermia [Age at Initiation]

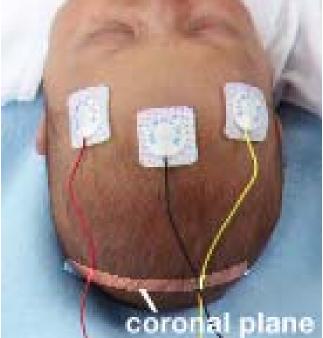

Khurshid et al 2009

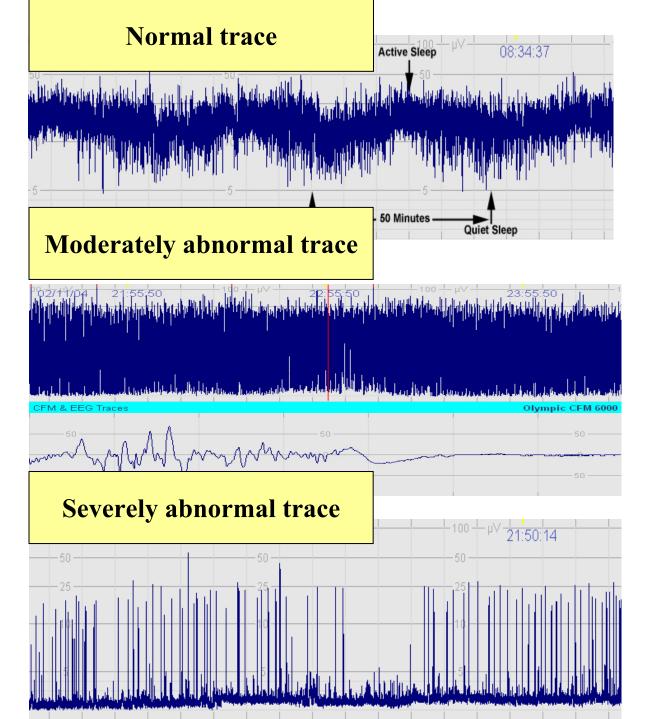
0	1		2	3	4	5	6	7	8
	116 min		12 m	69 mins	12 mi	22 ns		151 mins	
	Birth to Call	Dispa	To atch	To Arrival		To ling start	t	ertiary N	To ICU


Therapeutic hypothermia on neonatal transport

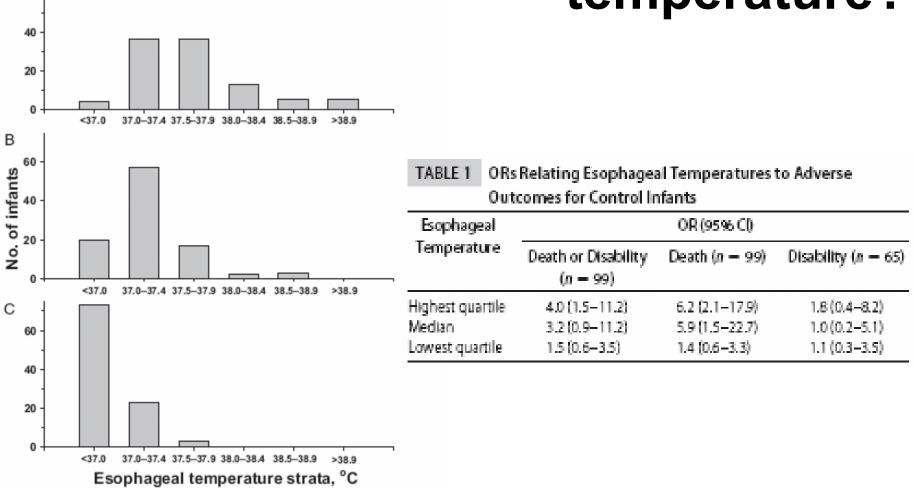
- **1. Decision to implement** based on the geographics of the referral base and neonatal transport team capabilities
- 2. Establish *protocols* and organize *education* sessions (including neurological assessment)
- 3. *Equipment*: system for continuous rectal temperature monitoring throughout cooling and transport, cool gel packs, receiving blankets and transport incubator
- Consider *passive cooling* and/or targeting temperature <u>34–35°C</u> in start-up phase to avoid overcooling
- 5. Maintain flow sheets and *database* for recording clinical data for quality assessment and improvement

Figure 2B Temperature during transport and the 6 hour initiation of intervention period by birth hospital status




Cooling in Transport

Fairchild 2010 J Perinat


Selective Head Cooling

	Cooled	Control	p value
Intermediate aEEG group, n=172	[
Died or severe disability at 18 months	40 (48%)	58 (66%)	0.02
Died	24 (29%)	34 (39%)	0.20
Severe neuromotor disability	7 (12%)	15 (28%)	0.03
Bayley MDI† <70	15 (25%)	20 (40%)	0.15
Bilateral cortical visual impairment	4 (7%)	7 (14%)	0.34
Secondary outcomes			
Multiple disabilities	8 (14%)	14 (28%)	0.10
Bayley PDI <70	14 (24%)	18 (39%)	0.13
Bilateral sensorineural hearing loss	3 (6%)	1 (2%)	0.63
Epilepsy	8 (13%)	8 (15%)	0.79
Continuous BSID II scores (median, range)			
Bayley MDI	85 (49–116)	77.0 (49-119)	0.04
Bayley PDI	89.5 (49-127)	84.5 (49-125)	0.047
Severe aEEG group, n=46			
Died or severe disability at 18 months	19 (79%)	15 (68%)	0.51
Died	12 (50%)	8 (36%)	0.39
Severe neuromotor disability	7 (58%)	6 (43%)	0.70
Bayley MDI§ <70	6 (55%)	4 (36%)	0.67
Bilateral cortical visual impairment	3 (25%)	4(31%)	1.00
Secondary outcomes			
Multiple disabilities	7 (58%)	6 (43%)	0.70
Bayley PDI <70	7 (64%)	5 (50%)	0.67
Bilateral sensorineural hearing loss	2 (22%)	2 (17%)	1.00
Epilepsy	3 (25%)	3 (21%)	1.00

Tips for Community Hospitals

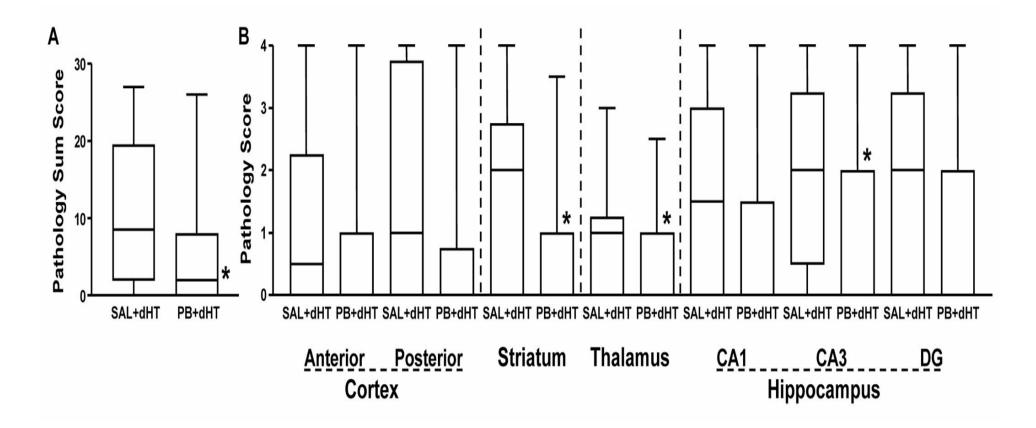
- Early Referral (risk factors & any encephalopathy)
- Avoid Hyperthermia maintain normal temperature

Is there harm from elevated temperature?

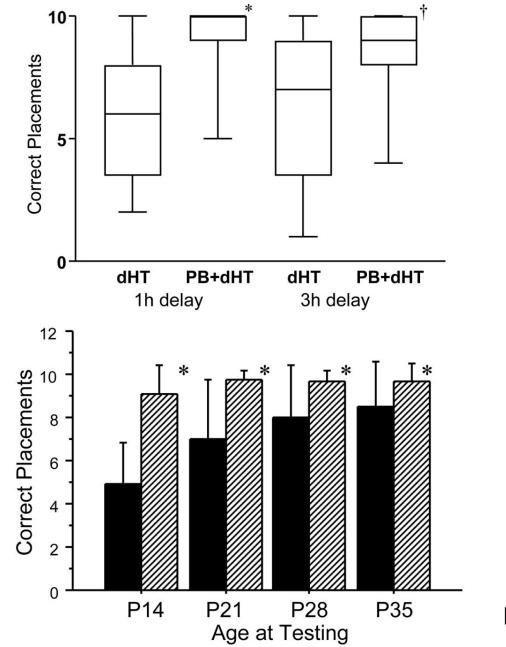
A

60

Need for Adjunctive Therapy

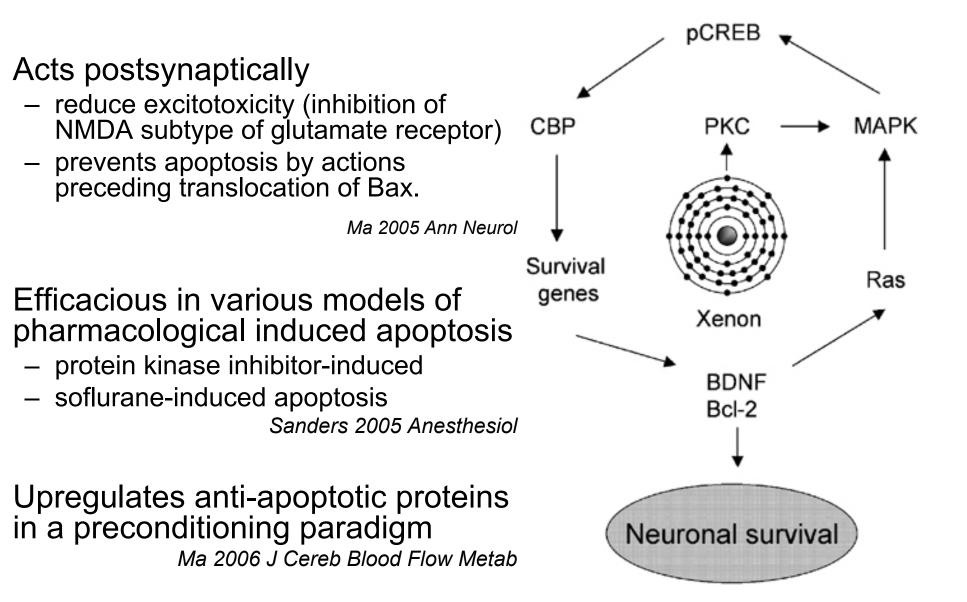

- > 40% patients fail to respond to therapeutic hypothermia – *biological* constraints
- Access to expensive equipment *financial* constraints
- Challenges of maintaining target temperature outside of NICU setting – *logistic* constraints
- Temporal delay in initiation of hypothermia geographical constraints

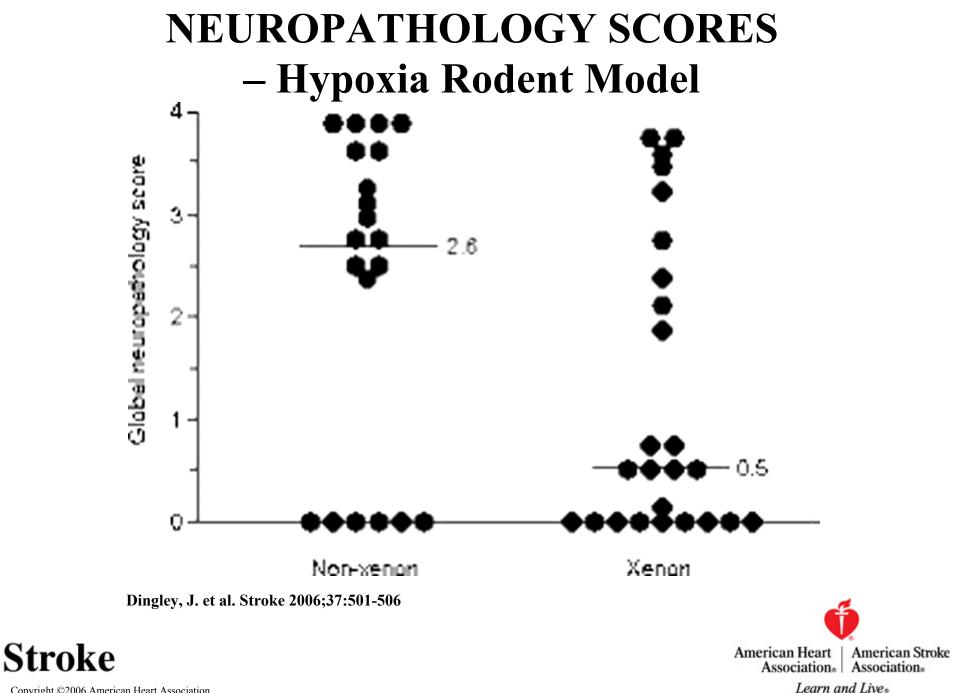
Adjunctive Phenobarbitone


GABA agonist

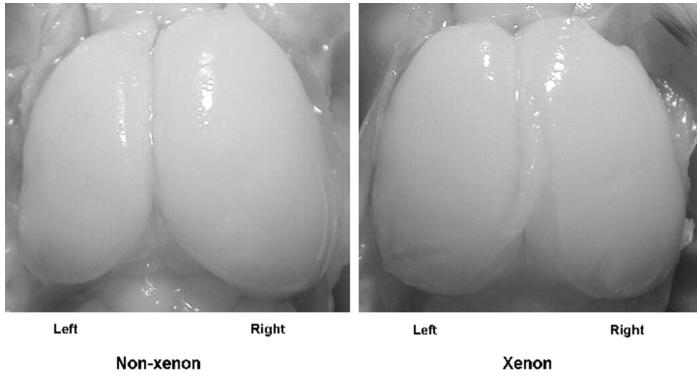
- Reduced cerebral metabolic demand
- Antioxidant
- Decreased cerebral edema Nilsson 1971 Acta Neurol, Crane 1978 Stroke, Singh 2004 J Perinat Med
- Potential synergism with bumetanide
 - maturational changes in neuronal chloride transporter expression on GABA receptor function
 - blocking the neonatal neuronal chloride transporter with bumetanide can augment the inhibitory activity of GABA agonists

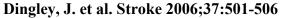
Phenobarbitone and Neuroprotection




Barks 2010 Ped Res

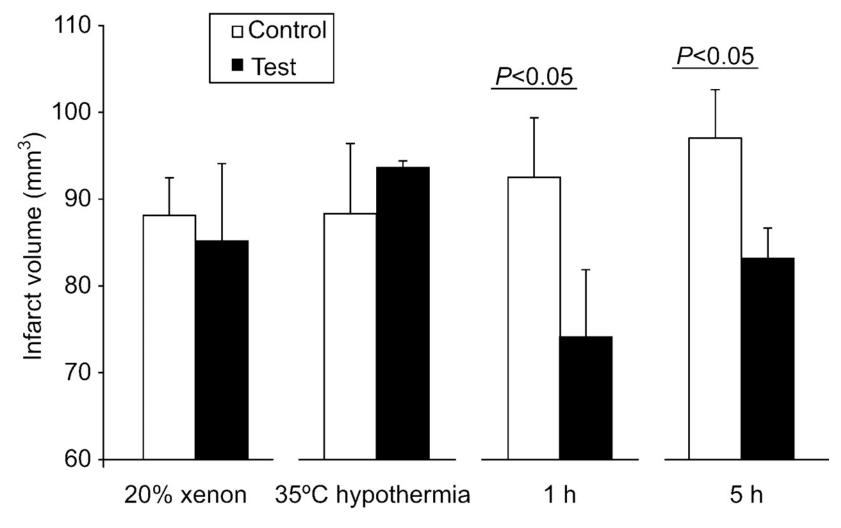
Barks 2010 Ped Res


Adjunctive Xenon



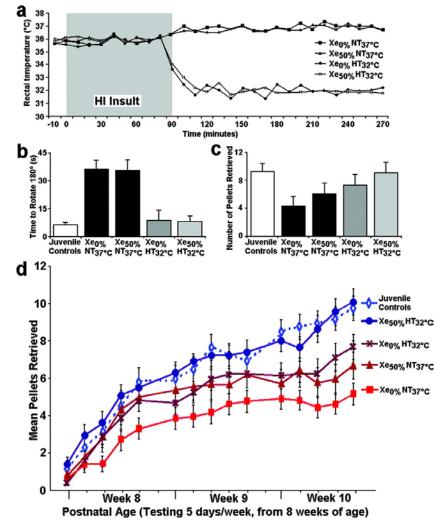
Copyright ©2006 American Heart Association

Dorsal views of typical brains from both groups



Stroke Copyright ©2006 American Heart Association

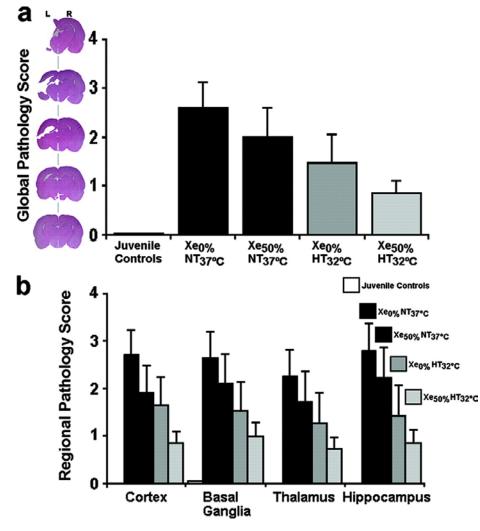
Infarct size and Hypothermia / Xenon



Martin J L et al. Br. J. Anaesth. 2007;98:236-240

© The Board of Management and Trustees of the British Journal of Anaesthesia 2007. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org

on Xenon – Hypothermia & Outcomes


Hobbs, C. et al. Stroke 2008;39:1307-1313

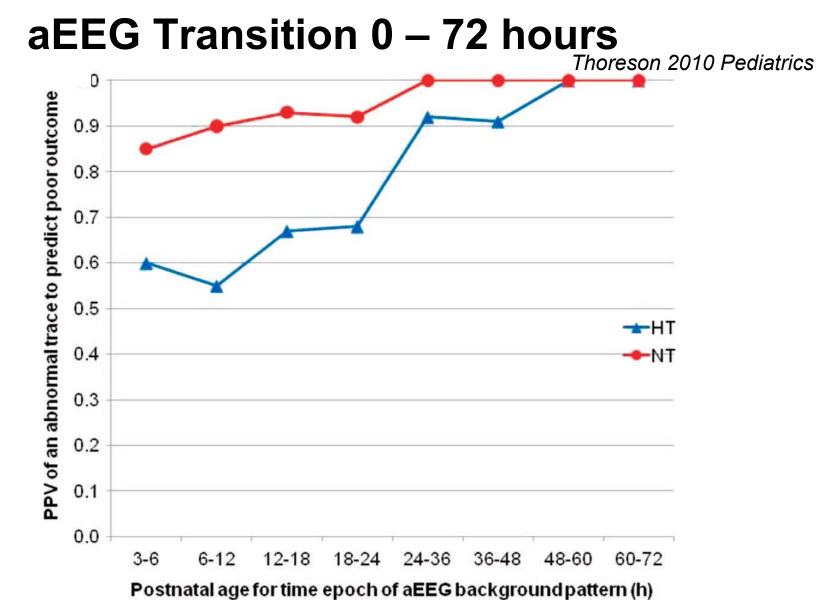
Copyright ©2008 American Heart Association

Stroke

Pathology -Treatment effects at 10-week survival

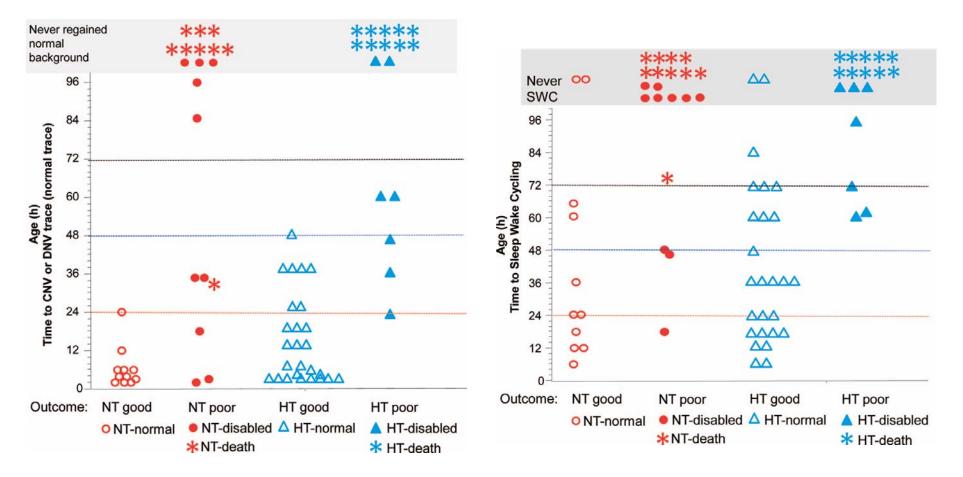
Hobbs, C. et al. Stroke 2008;39:1307-1313

Copyright ©2008 American Heart Association


Other strategies

- Oral **topirimate** (anti-glutamataergic)
 - Animal data suggest benefit with/out hypothermia
 - No adverse short term effects in humans Filippi 2010 J Pediatr
- Erythropoeitin sc
 - Improves sensorimotor function after neonatal rodent HI and protects against cerebral injury (dose-dependent and only females)
 Fan 2010 Ped Res
 - Recent adminsitration to human neonates demonstrated feasibility with lower iNO concentrations
 El Mahdy 2010 Pediatrics
- **Melatonin** (Free radical scavenger/ potent anti-oxidant)
 - Maternal administration to mice model reduced cerebral injury Hutton 2009 Dev Neurosci
 - Administration before or after HI in immature rats led to reduced cerebral injury
 Carloni 2008 J Pineal Res

Evaluating Prognosis


- Serial aEEG, EEG predict outcome
 - -< 6 hour background</p>
 - Time to recovery of SWS (96% good outcome if recovered by 36 hours)
- MRI scans (Day 2–3) during hypothermia seem to predict later irreversible brain injuries in asphyxiated newborns.

Wintermark 2010 ADC

At 36 hours, the odd ratio (OR) for an abnormal trace to predict poor outcome was 10.70 (95% confidence interval [CI]

Normal Background SWS

	Cooled (n=64)	Non-cooled (n=67)	Adjusted*		Unadjusted*		
			OR (95% CI)	Р	OR (95% CI)	р	
Basal ganglia and thalami							
0	26	14	0.36 (0.15-0.84)	0.02	0.39 (0.18-0.84)	0.02	
1	11	14					
2	11	14					
3	16	25					
Posterior limb of internal capsule							
Normal	34	23	0.38 (0.17-0.85)	0.02	0.46 (0.23-0.93)	0.03	
Equivocal	2	5					
Abnormal	28	39					
White matter							
Normal	23	11	0-30 (0-12-0-77)	0.01	0.35 (0.15-0.80)	0.01	
1	19	26					
2	15	21					
3	7	9					
Cortex†							
0	34	24	0.62 (0.27–1.41)	0.25	0.65 (0.29-1.42)	0.28	
1	16	22					
2	10	16					
3	4	4					
Intracranial haemorrhage	25	22	Not done		1.31 (0.64–2.68)	0.11	

MRI FINDINGS

Data are number or OR (95% CI).*Odds ratio for presence or absence of MRI abnormalities in cooled and non-cooled infants, with and without adjustment for severity of amplitude integrated EEG and postnatal age. OR=odds ratio. †Cortex could not be assessed in one infant in the non-cooled group.

Table 2: Grades of cerebral lesions seen on MRI in cooled and non-cooled infants

Rutherford 2010 Lancet

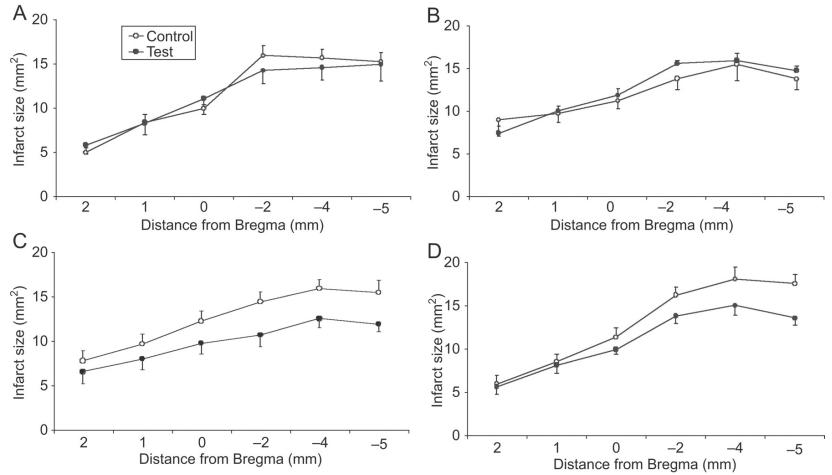
Conclusion

• Hypothermia is now a standard therapeutic option for *neonates with moderate/severe encephalopathy*

 Recommended by AAP, Canadian NRP, NICHD & ILCOR

Challenges of patient selection remain

Future Initiatives


- Gender and genetic influences
- Hypothermia in other clinical settings e.g. postcardiac arrest, preterm brain injury
- Beyond 6 hours, duration of cooling, rewarming rate
- Combination therapies (anticonvulsants, antiinflammatory agents)

Thankyou

Infarct size in rat pups exposed to hypothermia or xenon

Martin J L et al. Br. J. Anaesth. 2007;98:236-240

Pattern Classification	С	NV	DI	NV	E	3S		LV	F	т
Voltage Classification	HT	NT	НТ	NT	HT	NT	HT	NT	HT	NT
Normal Lower margin >5μν Upper margin >10 μν		0	Δ	0						
opper margin >10 µv		*		•						
Moderate abnormal Lower margin <5μν Upper margin >10 μν		0		••		*****				
Severely abnormal Lower margin <5μν Upper margin <10 μν					∆ *	*	*	*	▲ **** **	•• ***

O NT-normal

NT-disabled

NT-death

△ HT-normal ▲ HT-disabled 🔆 HT-death

Pattern Classification	Normal tra DN	ice (CNV & IV)	Abnormal trace (BS & LV & FT)		
Voltage Classification	HT	NT	HT	NT	
Normal Voltage Lower margin >5μν Upper margin >10 μν		∞ • *			
Abnormal Voltage Lower margin <5μν Upper margin >10 μν or <10 μν			**** **** ****	000 ***** ***** *	
 △ HT-normal △ HT-disabled ★ HT-death ○ NT-normal ● NT-disabled ★ NT-death 					