Uso y Abuso de Antibióticos en la Unidad de Cuidados Intensivos Neonatales



7° Congreso Argentino de Infectología Pediátrica Córdoba, Argentina April 3-5, 2014

Drug Use in NICUs

• 253,651 NICU patients, 1996 to 2005

– What were the most-prescribed drugs?

ANTIBIOTIC USE IN NICU

Antibiotics: most-prescribed medications in NICU!

Clark et al, Pediatrics 2006

–253,651 distinct NICU patients managed by Pediatrix from 1996 to 2005:

TABLE 2	Most Commonly Reported Medications	
	Medication Name	Frequency, A
Ampicillin ←		186 799
Gentamicin	171 388	
Ferrous sulfate		90 152
Vitamin (multivitamin)		64 329
Cefotaxime 🔶		55 455
Caffeine citrate		48 814
Furosemide		47 278
Vancomycin 🔶		44 2 18

ANTIBIOTIC THERAPY The GOOD

The BAD

The SHAMEFUL!

"ANTIBIOTIC"

Definition:

 Chemical substance produced by various microorganisms or made synthetically that is capable of destroying or inhibiting the growth of other organisms, and, in particular, bacteria

-Webster dictionary: antibiotics prevent, inhibit, or destroy life

 Coined in 1889 by Louis Pasteur's pupil, Paul Vuillemin, that means a process by which life could be used to destroy life

Prolonged Initial Antibiotic Treatment in ELBW Infants Cotton et al. *Pediatrics* 2009;123;58

Retrospective cohort study; 1998-2001

 5693 ELBW (BW<1000 g) infants admitted to 19 NRN centers: 4039 survived >5 days, received initial empiric antibiotic treatment, and had sterile cultures through the 1st 3 days of age

Prolonged Initial Antibiotic Treatment in ELBW Infants (cont)

Cotton et al. Pediatrics 2009;123;58

Median duration of therapy: 5 days (range 1-36 d)

- ◆ 2147 (53%) infants received prolonged empirical therapy (≥5 days): center range, 27%-85%
 - Lower gestational age, lower Apgar scores
 - Multivariate analysis: prolonged therapy associated with increased odds of NEC or death and of death
 - Each empirical treatment day was associated with increased odds of death, NEC and the composite of NEC/death

Prolonged Initial Antibiotic Treatment in Preterm Infants

Kuppula et al. *J Pediatr* 2011;159;720

Retrospective cohort study; 2000-2004

- → 365 infants (≤32 wks, ≤1500 g) infants who survived free of sepsis and NEC for 7 days
- → 36% received prolonged initial empiric antibiotics (≥5 days)
- Multivariate logistic regression:
 - LOS (OR, 2.45; 95% CI, 1.3-4.7)
 - LOS/NEC, or death (OR 2.7; 95% CI, 1.1-6.3)

Antibiotic Exposure and NEC

Alexander et al. J Pediatr 2011;159;392

- Retrospective, 2:1 control-case study: 2000-2008
- 124 NEC cases matched to 248 control subjects: gestational age, birth weight, birth year
- Cases less likely to have RDS (p=0.02), more likely to reach full enteral feeds (p=0.03) and have culture-proven sepsis (p<0.0001)
- After removal of neonates with sepsis from cohort, risk of NEC increased significantly with duration of antibiotic exposure
- Exposure for >10 days resulted in a nearly threefold increase in risk of NEC

NEONATAL SEPSIS: ANTIBIOTIC THERAPY

Antimicrobial utilization practices in NICUs impact on the types of microorganisms responsible for neonatal sepsis and their antibiotic resistance patterns!

EMPIRIC ANTIBIOTIC THERAPY AND RESISTANT BACILLI

- Prospective cross-over trial, 6-month intervals (12/96-12/97): 2 NICUs (Netherlands)
- Empiric antibiotic regimens:
 - Penicillin / tobramycin (EOS);
 flucloxacillin / tobramycin (LOS)
 - Amoxicillin IV / cefotaxime (EOS); flucloxacillin / cefotaxime (LOS)
- Weekly rectal, respiratory aspirate cultures; clinical isolates monitored

de Man et al, Lancet 2000;355:973

EMPIRIC ANTIBIOTIC THERAPY AND RESISTANT BACILLI

Penicillin (flucloxacillin) / tobramycin regimen:

- E. coli predominant Gram-neg isolate (53%)

Amoxicillin (flucloxacillin) / cefotaxime regimen:

- Enterobacter sp. predominant Gram-neg (77%)
- Emergence of resistance higher:
 - Cefotaxime-R Gram-neg: RR 3
 - Cefotaxime-R Enterobacter sp.: RR 3
 - Gram-neg bacilli resistant to empiric rx: 41 vs 3 infants (p<0.001); RR 18

EMPIRIC ANTIBIOTIC THERAPY AND RESISTANT BACILLI

Penicillin (flucloxacillin) / tobramycin regimen: -Shorter hospital stay, less CVLs Amoxicillin (flucloxacillin) / cefotaxime group: -Higher vancomycin use No significant differences in deaths CoNS predominant pathogen in both groups! *de Man et al, Lancet 2000;355:973

ANTIBIOTIC USE AND RESISTANCE: CAUSAL ASSOCIATION?

- Changes in antibiotic usage paralleled by changes in prevalence of resistance
- Resistance more prevalent in nosocomial vs. community-acquired bacterial strains
- Patients infected with resistant strains are more likely to have received prior antibiotics
- Hospital areas with highest resistance rates have highest antibiotic use rates
- Increasing duration of patient exposure to antibiotics increases likelihood of colonization with resistant organisms

Campaign to Prevent Antimicrobial Resistance

Centers for Disease Control and Prevention

National Center for Infectious Diseases Division of Healthcare Quality Promotion

Campaign to Prevent Antimicrobial Resistance Online
Federal Action Plan to Combat Antimicrobial Resistance

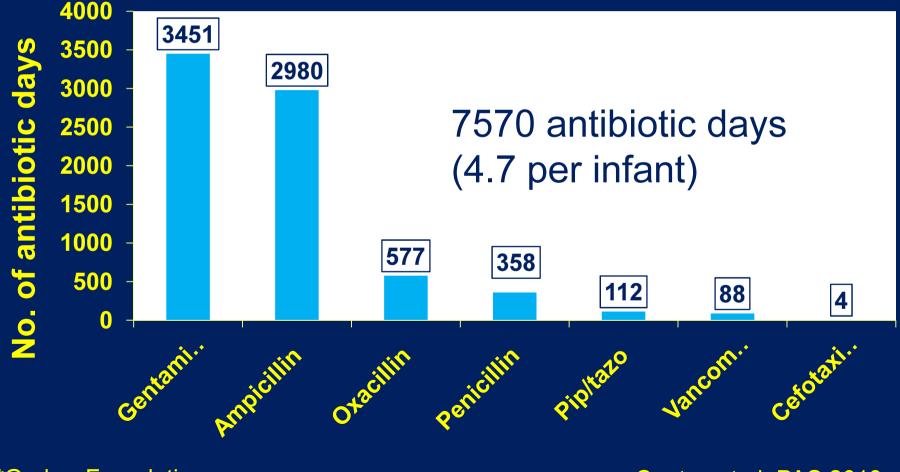
CDC CAMPAIGN: 12 STEPS

- Prevent Infection:
 - **1.** Vaccinate hospitalized children and staff
 - 2. Get the devices out
- Diagnose and Treat Infection Effectively:
 - 3. Use appropriate methods for diagnosis
 - 4. Target the pathogen
 - **5.** Access the experts

CDC CAMPAIGN: 12 STEPS

- Use Antimicrobials Wisely:
 - 6. Practice antimicrobial control
 - 7. Use local data
 - 8. Treat infection, not contamination or colonization
 - 9. Know when to say "no"
 - **10. Stop treatment**
- Prevent Transmission:
 - **11. Practice infection control**
 - **12. Practice hand hygiene**

Antimicrobial Stewardship


"Selection, dose, and duration of antibiotic treatment resulting in best clinical outcome... minimal toxicity... minimal subsequent resistance."

Owens RC, Pharmacotherapy 2004

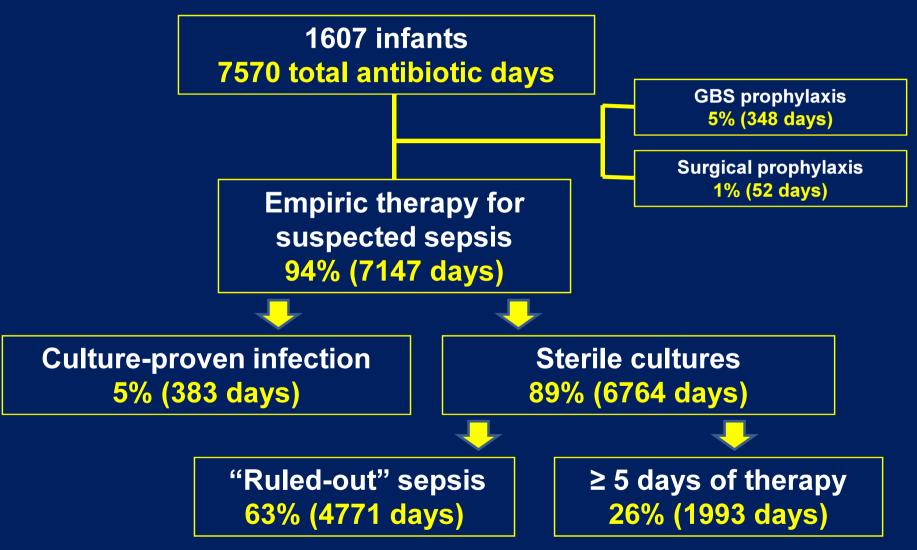
Parkland Memorial Hospital: One Year Prospective Surveillance

1607 infants admitted to NICU; all inborn

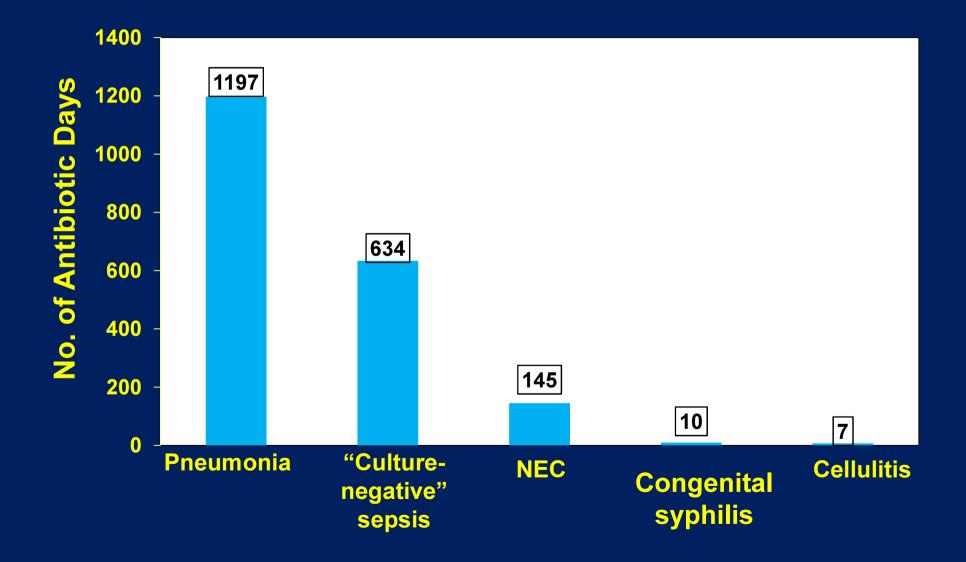
*Gerber Foundation

Cantey et al, PAS 2013

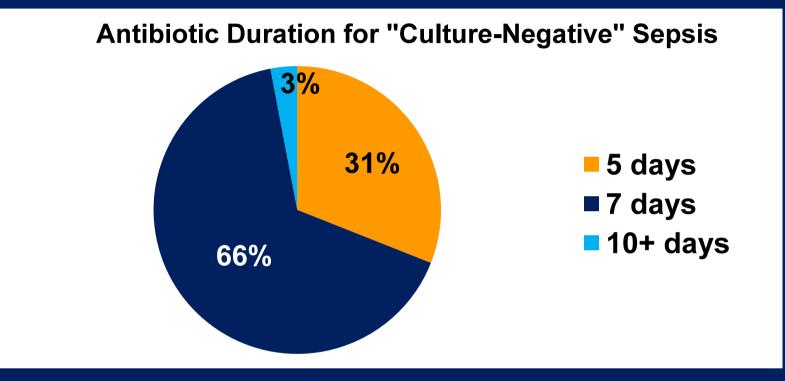
Vancomycin-Reduction Protocol: *The Boston* Experience Chiu et al. PIDJ 2011;30:273


 2 NICUs: Brigham & Women's Hospital (BWH), Mass Gen Hospital (MGH); low MRSA rates

 2006: vancomycin use guideline implemented that restricted its use for empiric therapy of lateonset infection; data collected pre/post periods


Nafcillin (BWH) or oxacillin (MGH) with gent

 Causes of death, duration of bacteremia, and incidence of complications or deaths attributable to LOS did not change significantly **Vancomycin-Reduction Protocol:** The Boston Experience Chiu et al. PIDJ 2011;30:273 •Vancomycin start rates: - BWH: 6.9 to 4.5 per 1000 patient-days • 35% reduction; p=0.01 -MSG: 17 to 6.4 per 1000 patient-days • 62% reduction; p<0.0001</p> • Number of infants exposed to vancomycin: -BWH: 5.2 to 3.1 per 1000 patient-days • 40% reduction: p=0.008 - MGH: 10.8 to 5.5 per 1000 patient-days • 49% reduction; p=0.009


Parkland Memorial Hospital: One Year Prospective Surveillance

PMH: Treatment for ≥ 5 days

PMH: "Culture-Negative Sepsis"

- 97% of therapy initiated within 72 hours of birth (early-onset)
- 3% initiated beyond 72 hours (late-onset)


Chorioamnionitis and the Asymptomatic Infant GL Jackson et al, Pediatrics 2004;113:1173

- Prospective, observational study:
 - 856 newborns, BW <u>></u>2100 g, GA <u>></u>35
 - Exposed to maternal chorio (T \geq 38)
 - All received amp/gent x 48 hrs
- ♦ 96%: sterile cultures, A/G stopped at 48 hrs
- F/U (1-3 wks; 92%): all with abnormal WBC I/T; 50% of those with normal WBCs (even MR#)
- ♦ 99% had ≥1 abnormality (2427 WBCs)

 Specificity, 0.12-0.91; negative predictive value, 0.91-0.97; sensitivity, 0.27-0.76

PMH: Pneumonia

Antibiotic Duration for Pneumonia

- 94% of therapy initiated within 72 hours of birth (early-onset)
- 6% initiated beyond 72 hours (late-onset)

Neonatal Pneumonia Engle et al. *J Perinatology* 2002;20:421

- ◆ 73 full term newborns: normal newborn nursery
- Presented with respiratory signs, abnormal CXR but no mod/thick meconium, prior antibiotic treatment >24 hrs, oxygen >8 hrs
- If asymptomatic at 48 hrs, randomized to 4 d (plus 24 hrs observation; n=35) vs 7 d (n=38) of amp/gent (all blood cultures sterile)
- No re-hospitalization for sepsis, pneumonia
- With 95% confidence, the true rate of success for the 4 d group was at least 92%

RESPIRATORY VIRUSES: NICU Kidszun A et al, PIDJ, 2013

- ♦ Prospective study: 8/2010 3/2012
- 64 (14%) of 462 infants >72 hrs of age evaluated for late-onset sepsis and IV antibiotics started
 - Median GA 26 wk (24-40), BW 720 g (370-3650)

 Multiplex PCR (in-house): adenovirus, RSV, influenza A/B/H1N1, parainfluenza 1-4, metapneumovirus, coronavirus, picornavir us (rhino/entero)

RESPIRATORY VIRUSES: NICU Kidszun A et al, PIDJ, 2013

- 60 infants (4 excluded inadequate specimen)
- ♦6 (10%) RVP positive:
 - -RSV, 1; picornavirus, 5
- 3 (5%) had positive blood cx: CoNS, 2;
 Klebsiella oxytoca, 1
- ◆31 (52%) had "clinical sepsis" (antibiotics ≥5 d and/or CRP >15 mg/L) – RVP negative
- No specific presentation (clinical or labs) and signs same as bacterial sepsis (no URI-sx)

RESPIRATORY VIRUSES IN NICU: THE VIRION-I Study Ronchi et al, PAS, 2013

Prospective cohort study performed at Parkland Hospital (Dallas) and Women & Infants Hospital (Brown University, Rhode Island – Michelow)

 OBJECTIVE: To determine the incidence of respiratory viral infections among infants who are >72 hours of age, evaluated for possible sepsis and antibiotics started while in NICU

RESPIRATORY VIRUSES IN NICU: THE VIRION-I Study Ronchi et al, PAS, 2013

◆1 year: 1/15/12 – 1/31/13

 Nasopharyngeal specimen for respiratory viral PCR:

Luminex[®]: 17 viruses (influenza
 A/B, RSV, metapneumovirus, rhinovirus/en
 terovirus, adenovirus, parainfluenza 1 4, coronavirus)

– Genmark PCR (eSensor®): 14 viruses

RESPIRATORY VIRUSES IN NICU: THE VIRION-I Study Ronchi et al, PAS, 2013 100 (70%) of 142 eligible infants enrolled -PMH: 94% (86/91) $-GA (mean \pm SD): 31 \pm 5 wk$ -BW (mean ± SD): 1715 ± 969 g -W & I: 27% (14/51) -GA (mean ± SD): 31 ± 5 wk -BW (mean ± SD): 1595 ± 814 135 sepsis evaluations / antibiotics

RESPIRATORY VIRUSES IN NICU: THE VIRION-I Study Ronchi et al, PAS, 2013

♦ (8%) infants: positive respiratory viral PCR:

- -7% (6/86) at PMH
- -14% (2/14) at W&I
- 8 (6%) of 135 sepsis evaluations was associated with a positive respiratory viral PCR test

 None had a positive bacterial or fungal blood/CSF culture.

RESPIRATORY VIRUSES IN NICU: THE VIRION-I Study

- ◆8 infants (GA: 25-34 wk; BW 420-2705 g):
 - -Rhino/entero: 4
 - Parainfluenza-3: 2
 - -Coronavirus: 2
- Hypothermia (7), fever (1), tachypnea (7), apnea (6), congestion/rhinorhhea (2), bloody stool (2); 2 required mechanical ventilation
 3 received antibiotics ≥5 days
- Clinical suspicion (75% of PCR-pos infants)

Summary and Conclusions

- Improving antimicrobial use in the NICU requires generating local data and engaging key stakeholders.
- Use variability in treatment to gain consensus.
- Start with **low hanging fruit** to achieve success!
- Assessment needs to include **safety**.
- **Disseminate outcomes** widely within your organization and publish your results!!!

GRACIAS!

Vignette Study

Patel et al, ICHE 2011.

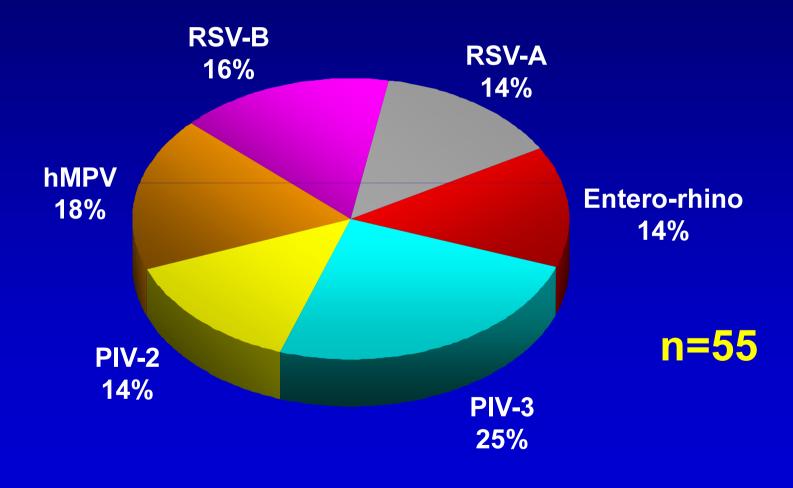
- Survey consisting of 12 clinical vignettes describing scenarios of antibiotic use in the NICU
- Sent to neonatology attendings and fellows, neonatal nurse practitioners, and residents in academic NICU's
- 161 responders answered "appropriate," "inappropriate," or "not sure" to the antibiotic usage described in each vignette
- Graded on correct usage as defined by CDC's 12-Step Campaign to Prevent Antimicrobial Resistance

Patel et al, continued

Antibiotic use described	% of responders calling use appropriate	Reason wrong
21 days of piperacillin/tazobactam for <i>P.</i> <i>aeruginosa</i> sepsis	11	Too long
10 days of cefazolin for chest tube placement	13	Prolonged prophylaxis
Metronidazole and meropenem for treatment of NEC	44	Redundant therapy
10 days of vancomycin for 1 positive BCx for CONS from PICC with negative peripheral BCx	48	Treating contamination

RESPIRATORY VIRUSES: NICU Bennett NJ et al, *J Pediatr*, 2012

Prospective, 1 year surveillance in 2 NICUs


 Preterm infants <33 wks GA (NICU since birth) had nasopharyngeal swabs for detection of respiratory viruses by multiplex PCR twice weekly within 3 days of birth until discharge

 Respiratory viral panel (Luminex): 17 different respiratory viruses (influenza A/B; RSV A/B; parainfluenza 1-4; coronavirus; adenovirus; rhinovirus/enterovirus; metapneumovirus)

RESPIRATORY VIRUSES: NICU Bennett NJ et al, J Pediatr, 2012

 52% (26/50) of infants tested positive for a respiratory virus at least once during the NICU stay (708 specimens obtained)

Respiratory Viruses Detected in 26 Preterm Infants in NICU

Bennett et al. J Pediatr, 2012

RESPIRATORY VIRUSES: NICU Bennett NJ et al, *J Pediatr*, 2012

18 samples (28% of the positive swabs)
 included more than 1 virus

 14 infants had sequentially positive specimens for the same virus over 3-13 days

No long term outcomes

RESPIRATORY VIRUSES: NICU Bennett NJ et al, *J Pediatr*, 2012

- Virus-positive infants:
 - –Longer length of stay (70 d vs 35 d, p=0.002)
 - -Need for intubation (65% vs 29%, p=0.01)
 - Duration of intubation (19 vs 5 days, p=0.03)
 - Duration of oxygen requirement (51 vs 13 d, p=0.002)
 - -BPD (46% vs 21%, p=0.05)

More desaturation (p<0.0001) and clinical deterioration episodes (p=0.0001)

Another Challenge: Duration of Treatment?

• How long is *long enough*?