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Systemic inflammation and sepsis.  
Part II: Functional consequences of the storm
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ABSTRACT
No organ is exempt from sepsis-induced 
dysfunction.  Sustained,  uncontrol led 
inflammatory activity triggers a sequence of 
systemic mechanisms that tend to affect tissue 
and vascular homeostasis. This is boosted by the 
effect typical of microorganisms, which leads to 
severe functional consequences for the patient.
A child’s body is particularly sensitive to the 
effects of sepsis, partly due to the immaturity of 
several physiological variables. As a result, there 
is usually an early clinical impact associated with 
a greater severity.
Although several intricate mechanisms lead to 
organ dysfunction, and many of them have not 
been fully elucidated, knowing them facilitates 
the understanding of the clinical picture and 
allows to establish an adequate therapeutic 
approach for each specific case.
Key words: sepsis, septic shock, multiple organ 
failure.
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GLOSSARY
ATP: adenosine triphosphate.
AVP: arginine vasopressin.
BNP: brain natriuretic peptide.
CRP: C-reactive protein.
DAMPs: damage-associated 
molecular patterns.
DIC: disseminated intravascular 
coagulation.
DNA: deoxyribonucleic acid. 
HPA: hypothalamic-pituitary-adrenal.
ICAM-1: intercellular adhesion 
molecule-1.
IL-1: interleukin 1.
IL-6: interleukin 6.
IL-18: interleukin 18.
MAP: mitogen-activated protein.
NF-κb: nuclear transcription factor 
kappa-b.
NO: nitric oxide.

O2: oxygen.
PAI-1: tissue plasminogen activator 
inhibitor-1.
PAMPs: pathogen-associated 
molecular patterns.
pSOFA: pediatric SOFA.
SOFA: Sequential Organ Failure 
Assessment.
TFPI: tissue factor pathway inhibitor.
TLRs: Toll-like receptors.
TNF-α: tumor necrosis factor alpha.

INTRODUCTION
Organ dysfunction is the clinical 

presentation of sepsis and may go 
unnoticed in its initial stages.1 It is 
the consequence of tissue aggression 
mediated by the inflammatory storm 
and the causative microorganism. 
Endothelial damage, microvascular 
dysfunction, and cell metabolism 
alteration are the results of this 
process, whose final common pathway 
is progression to multiple organ 
failure.2-4 This implies cardiovascular, 
respiratory, renal, gastrointestinal, 
neuronal, and metabolic involvement, 
with severe functional consequences 
for the patient.5-7

T h e  c l i n i c a l  a n d  b i o l o g i c a l 
phenotype of sepsis may vary based 
on the following: age, environment, 
presence of an underlying disease, 
chronic  medicat ion use,  recent 
surgeries, and the characteristics of 
the pathogenic microorganism itself. 
This often hinders the possibility of 
making a clinical diagnosis of organ 
dysfunction and sepsis.1

Although clinical scoring systems 
have not proven to be sensitive 
and specific enough to confirm the 
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diagnosis of organ dysfunction in sepsis, the 
Sequential Organ Failure Assessment (SOFA), 
which takes into account clinical, hematologic, 
biochemical, and blood gas data, is highly useful 
to predict mortality in hospitalized patients 
with sepsis-induced organ dysfunction.1,8 Since 
this scoring system was initially developed for 
adults,9,10 in recent years, a pediatric version 
has been developed, known as pediatric SOFA11 
(pSOFA) (Table 1). In this setting, sepsis is 
defined as an acute rise in the pSOFA score of 
2 points or more (organ dysfunction) in patients 
with confirmed or suspected infection.11 In this 
scenario, overall mortality is almost 12 %.11

In pediatrics, the pSOFA should not be the 
only tool used to clinically define sepsis. Its use, 
which has been more widely disseminated across 
intensive care units, is supplemental, given that 
it should be considered together with other 
clinical scoring systems and does not replace 
clinical judgment or individual and institutional 
experience.1,11,12

Objective: To describe the mechanisms 
leading to organ dysfunction in sepsis.

CELL INJURY
This phenomenon precedes organ dysfunction. 

It is caused by the convergence of three main 
mechanisms: ischemia, cytopathic injury, and 
programmed cell death. Ischemia results from 
the combination of an endothelial injury, a 
loss of metabolic self-regulation (imbalance 
between oxygen [O2] supply and demand), 
and microcirculatory alterations, caused by 
thrombosis and obstruction that reduce the O2 
exchange area.13

A cytopathic injury is caused by the inability 
to use O2 to create energy.14 Tumor necrosis 
factor alpha (TNF-α), nitric oxide (NO), and 
lipopolysaccharides bring about mitochondrial 
dysfunction due to the direct alteration of the 
electron transport chain, the degeneration of the 
mitochondrial ultrastructure (disruption and 
dysfunction of the proteins that make up the 
internal and external membranes), respiratory 
enzyme inhibit ion,  oxidative stress,  and 
mitochondrial deoxyribonucleic acid (DNA) 
break.15,16

Programmed cell death is caused by several 
mechanisms. Proinflammatory cytokines, 

lipopolysaccharides, and O2 free radicals 
cause apoptosis-related protein expression 
(Bad, Bax) and mitochondrial destruction. Both 
phenomena induce cytochrome c release into 
the cytoplasm, with the subsequent activation 
of intracellular caspases.17,18 Necroptosis and 
pyroptosis are proinflammatory forms of 
cell death. The former shares characteristics 
with necrosis and apoptosis, and takes place 
as an effect of TNF-α on intracellular caspase 
activation.19 On its side, pyroptosis is generated 
by the activation of intracellular caspase-1 
in response to intracellular microorganism 
infection (Salmonella, etc.). It is characterized by 
cytokine release into the extracellular medium 
(inflammatory amplification), following which 
DNA fragmentation and cell lysis take place.20

BLOOD, ENDOTHELIUM, AND 
MICROCIRCULATION

Endothelial dysfunction implies a severe 
vascular  homeostasis  al terat ion.  O 2 free 
radicals, lytic enzymes, and other substances 
released by polymorphonuclear cells adhered 
to the vascular wall damage it and alter its 
function. This is boosted by the direct effect 
of lipopolysaccharides and proinflammatory 
cytok ines  (TNF-α ,  in ter leukin  1  [ IL -1 ] , 
interleukin 6 [IL-6]). Therefore, the anticoagulant 
and antiadhesive properties of a healthy 
endothelium are lost, leading to an imbalance 
in favor of microvascular thrombosis, a loss of 
the barrier function, cell destruction, interstitial 
edema, and microcirculation alteration.13

Hemostasis
The mechanisms l inked to hemostasis 

activation and control lose their usual regulation 
during sepsis. In the vascular endothelium, 
lipopolysaccharides, TNF-α, and IL-1 induce tissue 
factor expression, which initiates the extrinsic 
coagulation pathway. In addition, they reduce 
the expression of thrombomodulin (endothelial 
anticoagulant), heparan sulfate (physiological 
activator of antithrombin III), tissue plasminogen 
activator (thrombolysis initiator), and tissue factor 
pathway inhibitor (TFPI), while they increase 
tissue plasminogen activator inhibitor-1 (PAI-1) 
expression.21,22 This translates into a procoagulant 
and antifibrinolytic endothelial phenotype.
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Platelet recruitment occurs through binding 
to the exposed subendothelial extracellular 
matrix (directly and through bridges with 
the von Willebrand factor) and an increased 
endothelial adhesiveness, through the GPIIb/
IIIa glycoprotein complex.23 The activation 
and consequent platelet aggregation favors the 
development of a prothrombotic state, which 
progresses to microvascular dysfunction.

Thrombocytopenia is a hematological marker 
of sepsis (Table 1). A marked thrombocytopenia 

(< 50 000/mm3) is associated with a worse 
prognosis . 24,25 I t  i s  preceded by reduced 
fibrinolysis26 and results from platelet activation 
and consumption in the setting of a prothrombotic 
state in sepsis. Sustained platelet activation, 
together with the release of microparticles 
(platelet vesicles with cytokines and coagulation 
factors inside) and α- and δ-granules, amplifies 
the inflammatory response and favors the 
development of endothelial dysfunction and 
multiple organ failure.27-31

Table 1. Scoring system to define organ dysfunction and sepsis in pediatrics

Outcome measure   Score

 0 1 2 3 4

Respiratory     
PaO2/FiO2

a ≥ 400  300-399  200-299  100-199*  < 100*
or     
SpO2/FiO2

b ≥ 292  264-291  221-264  148-220*  < 148*
Coagulation     

Platelet count (x 103/mm3) > 150  100-149  50-99  20-49  < 20
Hepatic     

Bilirubin (mg/dL) < 1.2  1.2-1.9  2.0-5.9  6.0-11.9  > 12
Cardiovascular     

MAP (mmHg) or 
inotropes (µg/kg/min)c     
< 1 mo  ≥ 46 < 46 Dopamine ≤ 5 Dopamine > 5 Dopamine > 15
1-11 mo  ≥ 55 < 55 or or or
12-23 mo  ≥ 60 < 60 dobutamine epinephrine ≤ 0.1 epinephrine > 0.1
24-59 mo  ≥ 62 < 62  or or
60-143 mo  ≥ 65 < 65  norepinephrine ≤ 0.1 norepinephrine > 0.1
144-216 mo  ≥ 67 < 67   
> 216 mod  ≥ 70 < 70   

Neurologic     
Pediatric Glasgow score  15 13-14 10-12 6-9 < 6

Renal     
Creatinine (mg/dL)     
< 1 mo  < 0.8 0.8-0.9 1.0-1.1 1.2-1.5 ≥ 1.6
1-11 mo  < 0.3 0.3-0.4 0.5-0.7 0.8-1.1 ≥ 1.2
12-23 mo  < 0.4 0.4-0.5 0.6-1.0 1.1-1.4 ≥ 1.5
24-59 mo  < 0.6 0.6-0.8 0.9-1.5 1.6-2.2 ≥ 2.3
60-143 mo  < 0.7 0.7-1.0 1.1-1.7 1.8-2.5 ≥ 2.6
144-216 mo  < 1.0 1.0-1.6 1.7-2.8 2.9-4.1 ≥ 4.2
> 216 mod  < 1.2 1.2-1.9 2.0-3.4 3.5-4.9 ≥ 5.0

pSOFA: pediatric Sequential Organ Failure Assessment; PaO2: arterial oxygen partial pressure; FiO2: fraction of inspired oxygen; 
SpO2: peripheral oxygen saturation; MAP: mean arterial pressure.
* With assisted mechanical ventilation.
a PaO2 was measured in mmHg.
b Only SpO2 measurements of 97 % or lower were used.
c MAP (mmHg) was used for scores 0 and 1. Inotropes (µg/kg/min) were used for scores 2 to 4.
d The cutoff point for patients older than 18 years (216 months) was identical to the original SOFA score.
Source: modified from Matics TJ, Sanchez-Pinto N. Adaptation and Validation of a Pediatric Sequential Organ Failure 
Assessment Score and Evaluation of the Sepsis-3 Definitions in Critically Ill Children. JAMA Pediatr. 2017;171(10):e172352.
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Disseminated intravascular coagulation (DIC) 
is the consequence of an uncontrolled coagulation 
cascade activation, which leads to factor 
consumption and microvascular thrombosis 
development.32 Neonates and infants younger 
than 6 months have a higher risk for bleeding 
during DIC32 because they have lower circulating 
levels of vitamin-K-dependent factors (II, VII, 
IX, and X). In turn, they have a lower ability to 
produce thrombin and reduced levels of natural 
coagulation inhibitors. Such differences explain 
the higher mortality due to DIC in this age group 
compared to older children and adults.33,34

Hemorheology
Both due to their mechanical properties 

and their abundance, red blood cells are the 
main determinants of blood’s rheological 
behavior. When blood flow becomes slower 
in microcirculation, erythrocyte aggregation 
produces an increased resistance to flow due 
to a greater viscosity (thixotropy).35 Normally, 
erythrocyte aggregation occurs when plasma 
macromolecules, mainly fibrinogen, form bridges 
of electrostatic attraction among these cells. In 
addition, it depends on red blood cell rigidity 
and deformability properties, which may be 
modified based on their geometry (surface/
volume ratio), internal viscosity (hemoglobin 
function), and the membrane’s elastic properties 
(adenosine triphosphate [ATP], lipid, and protein 
composition).36,37

In  the  case  o f  seps i s ,  the  changes  in 
microcirculation imply the loss of functional 
capillary density,  poor flow distribution 
and heterogeneity, microvascular reactivity 
alterations, glycocalyx degradation, and cell 
adherence to the endothelium.38 Together with 
increased circulating fibrinogen and O2 free 
radical production (which increases erythrocyte 
rigidity due to a surface/volume ratio alteration), 
such changes promote pathological aggregation 
between erythrocytes, resistant to intravascular 
shear forces. This leads to a greater capillary 
obstruction, which invigorates microvascular 
dysfunction.39

CARDIAC MUSCLE
The extensive peripheral vascular involvement 

underscores myocardial function during sepsis 

so as to maintain O2 delivery to the tissues 
(Figure 1). However, myocardial dysfunction 
is very common40 and affects both systolic 
and diastolic function.41 It is the result of an 
intramyocardial inflammation triggered by 
several mechanisms. Cardiomyocytes express 
several Toll-like receptors (TLRs) on their 
membranes, which recognize and are activated 
by pathogen-associated molecular patterns 
(PAMPs) and damage-associated molecular 
patterns (DAMPs). Such interaction, through the 
intermediate activation of the nuclear transcription 
factor kappa-b (NF-κb) and intracellular kinases 
(mitogen-activated protein [MAP] kinases), 
depresses myocardial contractility.42 Specifically, 
this is caused by the activation of calpain, an 
intracellular protease that mediates contractile 
and structural protein destruction.43

Proinflammatory cytokines contribute to 
myocardial inflammation and dysfunction. 
Interleukin 18 (IL-18) induces the phosphorylation 
o f  t h e  p h o s p h o l a m b a n - s a r c o p l a s m i c /
endoplasmic reticulum calcium ATPase (SERCA) 
system, an event leading to a reduced intracellular 
calcium bioavailability and, subsequently, 
reduced contractility.44 In turn, cardiomyocytes 
release proinflammatory cytokines and express 
intercellular adhesion molecule-1 (ICAM-1) 
in response to systemic inflammation. This 
allows the passage of leukocytes from coronary 
circulation which, together with ICAM-1 
binding to molecules like fibrinogen, affects 
the actin cytoskeleton. As a consequence, there 
is a variation between cell depolarization and 
calcium release from the sarcoplasmic reticulum 
(excitation-contraction coupling), which reduces 
both contractility and relaxation.45-48 On its side, 
the activated coronary endothelium releases 
NO, which contributes to an altered contractile 
function,49 and the polymorphonuclear cells that 
invade the myocardial tissue produce O2 free 
radicals that harm intracellular organelles. The 
resulting mitochondrial dysfunction is supportive 
of ventricular contractile involvement.50

Such complex scenario implies, first of all, a 
contractile depression that affects both ventricles 
equally (Figure 1.B). The increase in heart rate 
initially offsets this phenomenon, maintaining a 
relatively constant minute volume. As a result, 
the cardiac muscle consumes more O2. During 
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sepsis, the reduced tissue O2 extraction capacity 
causes myocardial ischemia,51,52 which affects 
even more contractile function and leads to 
ventricular rigidity which, in turn, affects diastolic 
function53 (Figures 1.C and D).

The circulating levels of biological markers 
of cardiovascular injury, like troponins T and I, 
have a high diagnostic correlation with sepsis 
severity and prognosis.54-56 The brain natriuretic 
peptide (BNP) and its precursor, pro-BNP, are 

released prematurely during sepsis due to the 
cell stretching that accompanies ventricular 
dysfunction and the action of proinflammatory 
molecules, including lipopolysaccharides, IL-1, 
and C-reactive protein (CRP).57-59 Their plasma 
levels are associated with myocardial dysfunction 
and are used in some clinical scoring systems to 
predict short-term mortality in sepsis.60,61

In newborns and infants, the cardiac muscle 
is particularly sensitive to the effects of sepsis.62 

Figure 1. Representation of the cardiac cycle of the left ventricle through the pressure-volume loop in normal conditions and 
during sepsis

ΔP: pressure difference; ΔV: volume difference; LVSV: left ventricular systolic volume. 
A: Normal left ventricle pressure-volume loop. B: In sepsis, myocardial involvement starts with a decreased ventricular 
contractility. This translates into a smaller slope in the contractility curve (end-systolic pressure/end-systolic volume). 
Therefore, LV systolic pressure decreases and, if preload does not change, so does the LVSV. The latter is partially buffered by 
the reduced afterload due to peripheral vasodilation, which takes place in the initial stages of sepsis. 
C and D: As aggressive inflammation advances, myocardial contractility becomes progressively more affected, and this is 
associated with diastolic dysfunction due to an increased ventricular rigidity (greater slope of the compliance curve). LV systolic 
pressure continues decreasing, just like LVSV. Although preload increases, this mechanism does not lead to an increased LVSV 
because it is mainly the result of pressure gain (end-diastolic pressure elevation) and not of a higher diastolic filling.
Note: Absolute volume and pressure values were not included due to the modifications resulting from age.
Source: Developed by the author.
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Contractile immaturity, a greater extracellular 
calcium dependence, a scarce response to diastolic 
filling (Frank-Starling mechanism), a smaller 
relaxation capacity, and an immature sympathetic 
innervation confer little functional reserve,62 
which is associated with a worse prognosis and 
progression to septic shock.63

LUNG
The extensive pulmonary vascularization, in 

addition to the cardiac output that goes along 
with it, accounts for the high frequency of lung 
injury during sepsis.64 Endothelial injury and 
microvascular thrombosis and occlusion are 
responsible for the initial disruption of the 
alveolar-capillary barrier, which leads to the 
development of acute respiratory distress.64,65

Polymorphonuclear  ce l l  and pla te le t 
aggregation amplifies the local inflammatory 
response.66 Together with the direct action of 
microorganisms and proinflammatory cytokines, 
they cause cell death (necroptosis and pyroptosis), 
increased capillary permeability, surfactant loss, 
and interstitial and alveolar edema. The latter 
causes an intrapulmonary shunt that adds to 
the ventilation/perfusion alteration to induce 
hypoxemia. The severity of hypoxemia correlates 
to the severity of respiratory distress.11,67

The loss of alveolar surfactant increases 
superficial tension and lung elasticity. Therefore, 
the difference in pressure necessary to push the 
air volume is higher than normal. The resulting 
scarce alveolar recruitment, in addition to 
non-homogeneous ventilation caused by the 
coexistence of collapsed, ventilated alveoli with 
edema inside, leads to changes in lung tissue 
viscoelastic properties, and a greater resistance 
to air entry. Finally, the consecutive alveolar 
collapse and re-expansion and the resulting 
high difference in pressure amplify the alveolar-
capillary barrier injury.68

Newborns and infants  have a smaller 
capacity to placate respiratory aggression 
during sepsis. The horizontal orientation of ribs 
and the circular shape of the chest restrict the 
diaphragm to a rather horizontal position, thus 
hindering its contractile performance (lower 
transdiaphragmatic pressure). Likewise, type 
I muscle fibers (related to resistance to muscle 
fatigue) develop scarcely and the metabolic 

output from ventilatory effort is very high.68 This 
leads to an early respiratory muscle wasting.

KIDNEY
Renal involvement is associated with an 

increased mortality69 and is present in half of 
patients with sepsis.70 Acute kidney injury is the 
result of a combination between a lower renal 
perfusion and the aggressive inflammation of the 
parenchyma.69

T u b u l a r  n e c r o s i s  a n d  m i c r o v a s c u l a r 
dysfunct ion are  caused by an excess ive 
v a s o c o n s t r i c t i o n ,  t h e  d e v e l o p m e n t  o f 
microthrombi in peritubular capil laries , 
polymorphonuclear cell infiltration, O2 free radical 
release, and direct action of proinflammatory 
cytokines and bacterial products, such as 
lipopolysaccharides and formylmethionine-
leucyl-phenylalanine (FMLP), a chemotactic 
tripeptide of the bacterial wall. This leads to a 
redistribution of blood flow to the renal medulla 
and the subsequent reduction in the glomerular 
filtration rate and a loss of fluid, electrolyte, and 
acid-base homeostasis.71

Although an increased level of serum creatinine 
is the standard method to define impairment of 
renal function,1,11 it occurs later than that of other 
markers.69 Plasma cystatin C and proenkephalin 
correlate just as well with kidney function and show 
an early elevation during sepsis.72-74

LIVER AND DIGESTIVE TRACT
Cholestatic liver dysfunction usually starts 

more insidiously than other types of dysfunction 
and is characterized by an increased level of 
bilirubin, alkaline phosphatase, and gamma-
glutamyl transferase.75 It is the result of an 
altered hepatobiliary transport induced by 
proinflammatory cytokines, O2 free radicals, and 
microvascular involvement.76,77

An alteration in intestinal microcirculation 
affects the digestive tract immune barrier. This 
favors bacterial translocation, thus amplifying the 
inflammatory response. In addition, the saprophytic 
flora and its defensive function become altered, 
which is associated with a greater mortality.78

NERVOUS SYSTEM
Brain dysfunction is caused by the diffuse 

a l t e ra t ion  o f  neurona l  metabo l i sm and 
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intercellular signaling.79 Proinflammatory 
cytokines reach the brain parenchyma through 
circumventricular organs and disruption of 
the blood-brain barrier. This causes brain 
inflammation, which implies the production 
of cytokines, NO, prostaglandins, and O2 free 
radicals by neurons and glial cells. In addition to 
this, there is activated polymorphonuclear cell 
invasion and a direct lipopolysaccharide action, 
which, all together, affect central nervous system 
function.80,81

Thus ,  encephalopathy,  which  a f fec ts 
approximately half of patients with sepsis, 
presents with progressive depression of the 
sensorium, confusion, and lethargy, and usually 
precedes the other clinical manifestations of 
sepsis.79 Almost two-thirds of these patients 
develop critical illness polyneuropathy and 
myopathy in the following days or weeks. This 
occurs with generalized weakness and loss of 
thermoalgesic sensitivity. It usually lasts longer 
than encephalopathy and is associated with 
increased mortality.82,83

NEUROENDOCRINE SYSTEM
Neuroendocrine function may be affected by 

the direct action of proinflammatory cytokines 
(TNF-α, IL-1, and IL-6) and bacterial products.84 
It mainly occurs on the hypothalamic-pituitary-
adrenal (HPA) axis and arginine vasopressin 
(AVP) .  In  addi t ion ,  there  i s  a  tendency 
towards hyperglycemia (insulin resistance, 
counterregulation) and it may reduce thyroid 
function. The importance of neuroendocrine 
dysfunction contributes to other organ and 
system dysfunction, and is associated with a 
greater severity.84,85

After an initial allostasis period, between 
20 % and 60 % of patients with sepsis develop 
multifactorial HPA axis dysfunction.86,87 This 
leads to critical illness-related corticosteroid 
insuff ic iency,  which is  characterized by 
hemodynamic failure and progression to fluid- 
and catecholamine-refractory septic shock.86-89

AVP increases rapidly to supraphysiological 
values in the initial stages of sepsis (cytokines, 
lipopolysaccharides, hypovolemia) and decreases 
markedly during septic shock, thus affecting 
osmotic and cardiovascular homeostasis.90,91 
Copeptin is released in equimolar amounts with 

AVP following the fragmentation of its precursor 
(pro-AVP). AVP circulating levels increase during 
progression to septic shock, so it offers a high 
diagnostic correlation with sepsis severity and 
prognosis.92-95

CONCLUSION
The mechanisms leading to organ dysfunction 

in sepsis are various and intricate. Understanding 
them facilitates an early diagnosis and the choice 
of an adequate therapeutic approach. n
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